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Fo reword

The National Aeronautics and Space Administration has established a program
by which the results of aerospace-related research and development from a
variety of sources are collected, evaluated, and disseminated widely for
the benefit of the industrlal, educational, and professional communities
in the nation. New technology thus collected and processed is announced in
appropriate documents issued by the Technology Utilization Office of NASA.
These documents contain the latest developments in materlals, processes,
products, management systems, and design techniques.

This document is one of a series of reports dealing with the development of
a class of high-temperature materials called superalloys. This development
has been accelerated by the demand for better materials to meet the special
needs and requirements in the aerospace fleld. NASA has been a major con-
tributor to the overall effort.

The discussions in this report deal mainly with the latest techniques in

processing superalloys, with emphasis specifically on vacuum meltln 9 and
casting. NASA contributions to the technology are set forth, and equipment
and techniques presently used in processing the metals are described. The
information has been compiled by Battelle Memorial Institute-Columbus

Laboratories. The document should be of value to investigators as a basis
for further research in materials technology_ and to manufacturers of equip-
ment in which metals having high-temperature characteristics are required.

Ronald J. Philips, Director
Technology Utilization Office
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VACUUM MELTING AND CASTING OF SUPERALLOYS

CHAPTER I. INTRODUCTION

NASA has had a multifaceted role in the development of vacuum metal-

lurgy as a technology. Most obvious would be the requirements associated

with the behavior of materials in the space environment and in the develop-

ment of alloys, processing of materials, and physical and mechanical testing

of refractory and reactive materials.

However, NASA's most important role in vacuum metallurgy as it is

associated with superalloys has been: (1) the identification of application re-

quirements for superalloys, (2) early and recent development of new and

improved superalloys, and (3) the identification of controlled atmosphere pro-

cessing requirements that were reflected in the improvement of superalloys

for service.

The importance of NASA's role springs in no small manner from the

early work in the vacuum metallurgy of nickel and cobalt_oase alloys at NASA

dating back to the immediate post-World War II period and early 1950's (1' Z)

This early beginning and current and past involvements with superalloys sprang

from and continues to be supported by the high-temperature material needs of

et en ines (3) Aeros
J g" " "4 5" pace application requirements associated with space

power systems ( , ) and high-tempera_._ structures have reinforced and am-
plified the importance of superalloys ( ' ). Another facet of NASA's role in

the vacuum metallurgy of superalloys is exploding on the technical scene.

This is the production of prealloyed superalloy powders and the processing of

the powders to fabricated parts for high-temperature use (8).

Therefore, NASA has had direct and indirect involvement in all of the

facets of vacuum metallurgy. This involvement has been direct in research

and development within its laboratories (9-11) and in the support of research

and developments for materials(12); indirect, in that NASA's requirements

for aircraft and space spin off technology and create the facilities and experi-

ence in industry that encourage and make possible further developments and

utilizations of this advanced technology for the solution of problems and in-

dustrial growth. The following sections detail the parts of this vacuum metal-

lurgy technology associated with the melting and casting of superalloys.
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CHAPTER Z. SUMA4ARY

The growth of interest in vacuum melting and casting is closely tied to

the growth in use of nickel-base superalloys. Were it not for the demands of

the superalloys for nonoxidizing atmospheres during melting and casting,

better vacuum furnaces and production facilities would not have resulted. At

the same time, the introduction of vacuum melting and the development of

better casting methods have provided the stimulus for improved nickel-base
and cobalt-base superalloys.

Of the factors influencing the growth of vacuum-melted superalloys, the

aircraft gas-turbine engine has been the most important. Cast components

were first used for the hot-nozzle guide vanes, solid or hollow; later cast

superalloys became accepted as the solid rotating turbine buckets, and, as
casting techniques improved, they were made into buckets with intricate cool-

ing passages. An example of cast nozzles and wheels for the three stages of
a small gas-turbine engine is shown in figure 1.

Because of the high aluminum and titanium content of the superalloys,

it becomes necessary to vacuum-melt them to prevent gross pickup of oxygen
and nitrogen and the formation of harmful films of nonmetallic materials. The

wrought vacuum-melted superalloys, which at first were used mainly as ro-

tating buckets on the aircraft gas-turbine engine, are now used as buckets

(predominantly in the latest turbine stages) and as disks, structural forgings,

fabricated sheet-metal parts, and rings. Some alloys that are called "wrought
alloys" are being cast to shape because the overall cost is lower than that for

forging and machining.

The two most important melting techniques currently used for the pro-

duction of superalloy materials are vacuum induction melting and vacuum arc

remelting. Vacuum induction melting offers excellent control over composi-

tion (including impurity content) while its major shortcoming is in the inferior

properties of large castings produced from vacuum induction melts. Vacuum

arc melting, on the other hand, provides significantly less control of composi-

tion during melting because the short time that the material exists in the liq-

uid state is insufficient for melt sampling and subsequent additions to the melt,

but the directional nature of solidification results in improved ingot properties.

Be cause of the fundamental diffe fence s between the se two melting techniques,

vacuum induction and vacuum arc melting have, in general, not been compet-

itors; rather, each technique has its own sphere of application. There has

been an increasing tendency in recent years to use double vacuum melting,

especially for the more highly alloyed superalloys. This technique consists

of initial vacuum induction melting and casting to form an electrode for sub-

sequent vacuum arc remelting. Double-vacuum-melted material essentially

_ombines the advantages of the two vacuum-melting techniques, i.e., the close

composition control characteristic of vacuum-induction-melted material as

well as the improved ingot structures typical of vacuum-arc-melted material.





In recent years, interest in electroslag melting in the United States has

significantly increased. The majority of the work conducted to date has been

on steels, although some of the more recent studies have been concerned

with the electroslag melting of superalloys. The results of these studies have,

in general, been encouraging, and electroslag melting is now used as a com-

mercial production technique for some materials. The principal advantage

offered by this technique is the highly directional nature of solidification with

accompanying increases in ingot fabricability and decreases in segregation,

microporosity, and piping.

The fourth melting technique pertinent to the production of superalloy

materials, which has never been used as a commercial technique for super-

alloys, has only recently been evaluated on a experimental basis for these

materials. This technique is electron-beam melting. The principal advan-

tage of electron-beam melting is the high purity which is attainable, while the

traditional shortcomings of the process have been high cost and the removal

of volatile alloying additions. Several developments in electron-beam tech-

nology, however, cause this technique to appear more attractive for the melt-

ing of superalloys. The first is the hearth melting furnace developed at Airco-

Temescal. One advantage of this furnace is the high production rates possible

with the potential for favorable economic competition with vacuum arc and

vacuum induction melting. Another advantage is due to the continuous flow of

molten metal along the hearth, since highly volatile alloying additions can be

made downstream just prior to casting. Thus, the vaporization loss of these

alloying additions is minimized.

The vaporization loss of volatile alloying elements can also be minimized

by an alternative electron-beam process known as plasma electron-beam

melting. These furnaces operate at higher pressures than do conventional

electron-beam furnaces with the resultant decrease in vaporization losses of

volatile constituents. For the same reasons, however, the purifying action

is somewhat less for plasma electron-beam melting than for high-vacuum

electron-beam melting; however, the plasma electron-beam-melting process

produces cleaner material than either vacuum-arc- or vacuum-induction-melt-

ing processes.

The only commercially important casting process currently used for

superalloy production is investment casting. Molds for these castings are

prepared by investing (i.e. , coating) a wax (or plastic) pattern with a refrac-

tory slurry. The pattern is then removed by melting and the re fractory shell

is fired to obtain a strong mold. The particular advantages which investment

castings have over forged or welded assemblies include close dimensional

control, fine surface finishes, the ability to cast intricate shapes and the

ability for microstructural control (e. g. , directional solidification). In addi-

tion, some alloys are not amenable to hot forging, and casting is the only

practical fabrication technique.
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CHAPTER 3. COMPOSITIONS_ PROPERTIES_ AND APPLICATIONS

Nickel-Bas e Superalloys

Table 1 gives the compositions of some commercial superalloys. The

nickel-base superalloys represent, as a class, high-temperature alloys of

superior strength. While the term "superalloys" is hard to define precisely

because of the overlap with various other high-temperature alloys, one of the

main characteristics of almost all nickel-base superalloys is that they contain

aluminum and, with few exceptions, titanium. These constituents participate

in the formation of gamma-prime (Ni 3 A1, Ti), the very powerful phase respon-

sible for high-temperature strength. At the same time, titanium and aluminum

have a strong chemical affinity for oxygen and nitrogen; therefore, if there is

more than about 4 percent total of these elements in the alloy, it must be

vacuum-melted to prevent the formation of harmful oxide films and nitrides.

We thus may have a good working definition of nickel-base superalloys:

Nickel-base superalloys are those high-temperature

alloys containing more than 50-percent nickel which

must be vacuum-melted because of their high aluminum
and titanium contents. (It should be mentioned that

use of inert-gas atmospheres or electroslag melting

might be possible alternatives, but they are not

extensively used today. )

This definition excludes alloys that are primarily solid-solution or carbide-

strengthened, such as Hastelloy Alloy X, Inconel Alloy 6Z5, and IN 102. It

also excludes certain of the earlier alloys that were once considered super-

alloys; Nimonic 80A, for example, the forerunner of the gamma-prime

strengthened alloys, does not require vacuum melting. Also excluded are

TD Nickel and TD Nickel-Chromium, which are strengthened by a dispersion

of fine thoria particles. These alloys are powder metallurgically prepared

and vacuum melting is not required.

Earlier definitions of superalloys centered around their high strength

• and oxidation resistance in the 1200 to 1900 F range. From a practical

viewpoint, this meant those alloys that could serve as the rotating buckets

in gas-turbine engines. Progressive widening of the definition sometimes

led to the inclusion of highly oxidation-resistant alloys (Hastelloy X, for

example) and alloys which have good strength in the 2000 to 2400 F range

(TD nickel, for example), but these clearly could not serve as the rotating

buckets of gas-turbine engines. Thus, insofar as nickel-base superalloys

are concerned, the vacuum-melting criterion is compatible with the

rotating-bucket criterion. An exception is Alloy 718, which lacks strength
above 1200 F.



TABLE I. -- COMPOSITIONS OF SELECTED VACUUM-/_ELTED

NICKEL-BASE SUPERALLOYS{ 13 - 17)

Nominal Composition (Balance Nickel) 1 percent

Alloy C Cr Co Mo W Cb Ti AI B Zr Fe
Othe r ( c )

Wrought Alloys

Astroloy 0.06 15 15 5.3 .... 3.5 4.4 0.03 ....

Inconel 700 0.12 15 28.5 3.7 .... 2.2 3.0 .... 0.7

Hastelloy R-235 0. 15 15. 5 Z. 5 (a) 5. 5 .... 2. 5 2, 0 .... l0

MIZ52 0.15 19 10 10 .... Z,6 1,0 01005 ....

Nimonic 115(b) 0. 1 15 15 3. 5 .... 4 5 ......

Ren4 41 0.09 19 11 10 .... 3.1 1,5 0.01( a ) ....

Ren4 85 0.27 9 15 3.3 5.4 -- 3.3 5,3 0.015 ....

SEL- 15 0.07 11 14.5 6.5 1.5 0.5 2.5 5,4 0.015 -- 0.5 (a)

Udimet 500 0.08 19 18 4 .... 2.9 Z,9 0.005 -- 4 (a)

Udimet 520 0. 05 19 IZ 6 1 -- 3.0 Z, 0 0. 005 ....

Udimet 700 O10 15 18,5 5.2 .... 3.5 4,3 0.05( a ) -- 1.0 (a)

Udimet 710 0.07 18 15 3 1.5 -- 5 Z,5 0.02 ....

Unitemp AF1753 0.Z4 16 7.2 1.6 8.4 -- 3.Z 1.9 0 008 0.06 9.5

Waspaloy 0. 07 19. 5 13. 5 4. 3 .... 3.0 1 , 4 0. 006 0.09 Z. 0(a)

Cast Alloys

_.

_.

Ahoy 713C 0.12 12.5 -- 4.2 -- 2.0 0.8 6.1 0.012 0.10 ....

Alloy 713LC 0.05 lZ -- 4.5 -- Z.0 0.6 5,9 0.01 0.10 ....

B-1900 0.1 8 10 6 .... 1.0 6,0 0.015 0,08 -- 4.3Ta

G,64(b) 0.13 II -- 3 4 2.0 -- 6,0 0.25 -- Z (a) --

G. 94 (b) 0. 06 9 10 4 4 4 -- 6, 0 Added Added ....

GMR-Z35D 0.15 15.5 -- 5 .... 2.5 3,5 0.05 -- 4.5 --

IN-100 0.18 10 15 3 .... 4.7 5.5 0 014 0.06 -- 1V

IN-738 0.17 16 8.5 1.8 2.6 0.9 3.4 3.4 0 01 0.1 -- 1.8Ta

M22 (b) 0. 13 5.7 -- 2 11 .... 6.3 -- 0.60 -- 3 Ta

_R-M200 0.15 9 10 -- 12.5 1.0 Z.0 5.0 0015 0.05 ....

_R-MZl 1 0.15 9 10 Z.5 5.5 Z.7 2.0 5.0 0.015 0.05 ....

M/kR-MZ46 0.15 9 10 Z.5 10 -- 1.5 5,5 0.015 0.05 0,15 1.5Ta

MAR-M421 0.15 15.5 10 1.8 3.5 1.8 1.8 4.3 0.015 0.05 1 (a) --

MAR-M432 0.15 15.5 20 -- 3 Z 4.3 2.8 0.015 005 ....

Nicrotung 0. 10 IZ 10 -- 8 -- 4.0 4, 0 0. 05 0. 05 ....

Nimocast 258(b) 0.2Z l 0 20 5 .... 3.7 4, 8 .... 2 (a) - -

PDRL 162 0. iZ I0 -- 4 2 i I 6. 5 0. 0Z 0. I 0, 5 (a) 2 Ta

TAZ-8 0. 13 6 -- 4 4 Z. 5V -- 6.0 -- I. 0 -- 8 Ta

TAZ-8A 0. 13 6 -- 4 4 2. 5 -- 6.0 0. 004 I. 0 -- 8 Ta

TAZ-8B 0.13 6 5 _4 4 1.5 -- 6,0 0.004 1.0 -- 8Ta

TRW 1900 0.11 i0 10 -- 9 1.5 1.0 6.0 0.03 0. I0 ....

(a) Maximum.

(b) British alloys.

(c) All alloys contain manganese and silicon, and most specifications contain maximum allowable amounts of these elements.

Typically, the amount present would be 0. 1 Mn and 0. Z Si, though considerable variation exists among elements.



Oxidation resistance, or more generally corrosion resistance, was

once part of the criteria for superalloys. All the alloys contain chromium

for imparting corrosion resistance, and the first of the family had about

20-percent chromium. As the strengthening alloying agents were added,

the percentage of chromium was successively lowered, reaching as low as

5.7 percent in Alloy M2Z. Accordingly, oxidation resistance is often im-

parted by a diffusion coating, usually of the aluminide type. Oxidation re-

sistance of the uncoated alloy should no longer be considered a criterion

for superalloys; rather, the alloy and its coating must be considered as a

system.

Figure 2 compares the approximate temperatures for rupture in

100 hours at 20,000 and 30,000 psi for various vacuum-melted superalloys.

The cast alloys - including Udimet 500 and Udimet 700, which are normally

wrought alloys - have higher creep-rupture strength than the wrought alloys.

This is due mainly to their higher aluminum and titanium content of roughly

6 to 7 percent (wrought-alloy content is from 4.5 to 6 percent). Numerous

exceptions make it difficult to generalize; nevertheless, it would be fair to

say that workability decreases _ith increasing total aluminum-plus-

titanium content. The workability of such high aluminum-plus-titanium

alloys as Udimet 700 and Nimonic 115 seems to be increased by the presence

of cobalt in their compositions (18). As a rule, when the aluminum-plus-

titanium content exceeds about 6 percent, vacuum casting becomes the normal

manufacturing method, and the alloys are called "cast alloys" rather than
"wr ought alloy s".

Because these alloys are often used in rotating parts, they are com-

pared in Figure 3 on the basis of operating temperature corrected for den-

sity differences.

Cobalt-Base Superalloys

Vacuum melting and casting of cobalt-base alloys was not practiced

until recently. However, with the development of the "MAR-M" series of

alloys based on strengthening by refractory metal carbides (particularly of

tantalum), the use of vacuum became important. Alloys MAR-M 302 and
509 (see table Z) find their main application in the stationary nozzle guide

vanes of gas-turbine engines, and are especially useful at higher tempera-

tures but lower stresses than those for the rotating buckets. They show

good oxidation resistance and good resistance to thermal fatigue. All of

these alloys are vacuum-cast to shape.

Other recent cobalt alloy developments are AiResist 13 and

AiResist 215(19), which are said to have high resistance to attack by
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FIGURE 2. RELATIVE TEMPERATURE CAPABILITIES

OF SOME VACUUM-MELTED SUPERALLOYS
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TABLE 2.

IZ

COMPOSITIONS OF SELECTED VACUUM-MELTED

COBALT-BASE SUPERALLOYS (14' 19, 20)

Nominal Composition (a) (Balance Cobalt), percent

Alloy C Cr Ni W Ta A1 B Zr Y

Cast Alloys

AiResist 13 0.45 21 Z. 5 (5) II Z 3.4 .... 0. I

AiResist 215 0.35 19 0. 5 (b) 4. 5 7. 5 4.3 -- 0. IZ 0. 13

MAR-M30Z 0.85 Zl. 5 -- l0 9 -- 0.005 0. 15 --

MAR-M509 0.60 23.5 I0 7 3.5 0.2 Ti 0.0I (a) 0.15 --

Wrought Alloys

AiResist 213 0. 18 19 0.5(b) 4.7 6.5 3.5 -- 0. 15 0. I

MAR-MgI8 0.05 Z0 Z0 -- 7. 5 .... 0. I0 --

(a) Manganese and silicon are present in all alloys, typically 0.1 to 0.2 Mn and 0.1 to 0.2 Si.

(b) Maximum.

sulfur-containing atmospheres, These alloys gain their strength from refrac-

tory metal carbides, and their corrosion resistance from chromium, alumi-

num, and yttrium.

Two wrought cobalt-base alloys have recently been introduced which

require vacuum melting: MAR-M 918 and AiResist 213. These alloys may

find applications in heat exhangers, jet-engine combustion cans, tailpipes,

and the like.
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CHAPTER 4. FACTORS IMPORTANT IN MELTING AND CASTING

Phys iochemical Consider ations

The amount of gaseous impurities that remain within a vacuum cast-

ing is a function of a great many variables such as melt composition,

crucible material, ultimate vacuum attainable, type of pump and pumping

speed, trap temperature, time at temperature near the melting point, and

the geometry of the melting furnace. Generalizations can be made, and

some principles can be illustrated to indicate how clean-up of a gaseous

impurity may be effected. For the most part this discussion is concerned

with pressures ranging from 10 .3 torr to 10 -6 torr since it is within this

range that most large melt furnaces operate.

Nature of residual gases in melting furnaces. - The sources of gas

within a vacuum furnace are leaks from the atmosphere, virtual leaks

through outgassing of walls and components, and back streaming from me-

chanical and diffusion pumps. The first source, of course, supplies

Smostly nitrogen and oxygen; the second supplies water vapor, hydrogen,

and carbon monoxide (generally in that order); and the third source gives

rise to heavy hydrocarbons that generally crack on contacting hot surfaces

to form simpler molecules. A liquid-nitrogen trap can greatly reduce back

streaming and trap the water vapor outgassing from the walls, but it has

virtually no effect on carbon monoxide or hydrogen, or on any real leak of

oxygen and nitrogen from the atmosphere.

Reaction of metals with residual gases. - A metal at elevated tem-

perature in a reduced-pressure environment may be purified by vaporiza-

tion of a volatile oxide. This can be caused by a reaction between a

residual-gas component and an impurity in the metal (such as hydrogen

with carbon to form methane) or, under some conditions, by water vapor

reacting with carbon to form hydrogen and carbon monoxide. There are no

gaseous compounds of nitrogen sufficiently stable such that this latter

mechanism can be used to reduce the nitrogen level. Nitrogen can be re-

duced effectively only by decomposition or by adding a constituent - such as

niobium, zirconium, titanium, hafnium, or uranium - that forms a strong

nitride. These metals can form nitride precipitates and can effectively

lower the nitrogen content in solution rather markedly. Nitrogen content is

a major problem in these metals. Searcy and Finnie have computed

Sievert's Law Constants for the solubility of nitrogen in a number of tran-

sition metals at their melting points as eutectic points(21). If one consid-

ers that the vacuum furnace is well trapped and produces an ultimate

vacuum of about 1 micron it is reasonable to suppose that this gas may be

mostly nitrogen, hence a system pressure of about 10 -6 atm is a realistic

estimate for the nitrogen partial pressure in such an evacuated chamber.

Table 3 shows the temperature of the calculation, the Sievert's Law

Constant, and the concentration in ppm atomic for a number of transition

metals. The values in the above table may be utilized to compare a
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predicted value with the basis of experimentation. Simkovich has presented

values for nitrogen content of a number of alloys after prolonged heating in

vacuum(22). In many cases there was little evidence that the ultimate com-

position had been reached although the rate of release of nitrogen had fallen.

Most of the alloys he considered contained 15-percent chromium, hence one

would assume (on considering an ideal solution) that the ultimate nitrogen

content could go as low as about 20 ppm. He shows something over 30 ppm

after 96 minutes at 2800 F and a pressure of 5 microns. The presence of

4-percent titanium results in a nitrogen retention of about ll0 ppm at

96 minutes, and the curve indicates that the nitrogen level is not decreas-

ing. Actually one would predict that 4-percent titanium would increase the

nitrogen level to possibly 1000 ppm if the titanium behaved as an ideal

solution. Semiquantitatively then, one can estimate the amount of nitrogen

based on the concentration of chromium as well as any of the strong nitrate

formers in table 3. If activities of the components in the metal are known,

then the computation can be made quantitative.

TABLE 3. - NITROGEN LEVEL ATTAINABLE IN 10 -6 ATM

NITROGEN RESIDUAL PRESSURE(2 l)

Temp, Siever t's Constant,

Element C k = XN/PN 21/2

Attainable Put ity,

ppm (atomic)

Ti 1670 8.50 x 101 >100,000

Zr 1850 3.20 x 101 >i00,000

Hf 2230 8.23 >i00,000

V 1920 I. 26 I, 300

Nb 1965 I. 57 i, 600

Ta 2690 2.25 x I0 -l 225

Cr 1900 1.35 x 10 -l 135

Ni* 1500 3 x 10 -5 0

*Added to original table.

Oxygen removal in melting. - Oxygen removal is more complex due

to the existence of gaseous oxide vapor species. In some cases - uranium,

tungsten, and molybdenum for example - it is possible to purify the metal

by preferential volatilization of an oxide impurity. At the other extreme -

the alkali metals - the metal must be distilled away from the impurity.

Brewer and Rosenblatt have analyzed a number of metals and have estab-

lished a parameter, R, which is a measure of how well oxygen can be re-

moved by volatilization of an oxide impurity. (23) R is defined as

(O/M)vapor/(O/M)metal, where O/M is the oxygen-to-metal ratio. Ahigh

value for R indicates that oxygen can be readily removed by vaporizing out

an oxide impurity. A very low value for R implies that the metal can be

purified by distilling the pure metal from its residual oxide. Nickel is an

example of a metal for which purification by volatilization is not practical.

They conclude that R = 10 for nickel at 1450 C. This would require that

10 percent of the metal be vaporized to reduce the oxygen content to I/2 its
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original value. As a generalization, values of R of a hundred or greater in-

dicate that oxygen can be removed by volatilization of an oxide impurity.

Values of R of one-hundredth or less indicate that a pure metal may be ob-

tained by distillation. Table 4 lists values of R, the mole fraction at sat-

uration, and the vapor pressure of the metal at temperature T for a number

of elements.

From table 4 one can conclude that the alkali and alkaline earth metals

may be purified by distilling them and that the 4th Group refractory transi-

tion metal can be purified by preferential volatilization of an oxide or even

through the loss of monatomic oxygen for molybdenum, tungsten, and rhe-

nium. For the transition metals, it is not practical to purify by these

means. It is possible, however, to utilize silicon or carbon to remove oxy-

gen. As an example of how silicon could be utilized, consider a molten

melt containing about 50-percent iron to which about one-percent silicon had

been added. It would be anticipated that silicon would not behave ideally in

the melt but rather it should show negative deviation from ideal behavior.

If the activity of the silicon is 0. 001 or thereabouts, one can compute the

efficacy of silicon in cleaning up an iron alloy. Based on free-energy val-

ues (24) for iron saturated with oxygen at 1810 K, one calculates the partial

pressure of oxygen (O2) in equilibrium with the melt to be about Z x 10 -9

atrn. * It necessarily follows that the partial pressure of oxygen in the fur-

nace must be less than this value if any purification of the melt is to occur.

One then calculates from the X o in table 4 a Sievert's Law constant of k =

ZOO for Fe at 1810 K. Based on the free energy of formation of SiO(g) at

1800 K one calculates that pSiO/(aSi X pOz)I/Z in these two expressions to

obtain X o = 1. Z x 10 -5 pSiO/aSi. If the activity of silicon is about 10 -3 in

the melt, then Xo = i. 2 x 10 -2 pSiO. In the original melt in which X o was

about I0 -2 then pSiO can be nearly atmospheric pressure. Boundary layer

reaction and other kinetic hinderances would prevent this rate being re-

alized, but it would be reasonable to expect silicon to effect a reduction in

the oxygen content of the melt by at least two orders of magnitude. A sim-

ilar analysis can be made for additions of carbon, tin, or germanium which

should also prove effective. This analysis can be considered at least semi-

quantitatively correct and certainly should be indicative of the potential

purity of product possible through vacuum melting.

*Atomic oxygen pressure is 5 x 10-9 atm; however, for this illustration molecular oxygen is employed.
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TABLE 4. - VAPORIZATION OF OXYGEN SPECIES FROM METALS

Temp, Pmetal, Xo, saturated R

Metal K arm Mole Fraction 0 at X o

Si 1685 10 .6.3 10 .3.7 108

Sm 1000 10 -10 10 -2 106.3

Nb 2740 10 .5.6 10 .4 103

Ta 3250 10 .5 10 -3"4 105

Ti 1940 10 .5.2 10 .0.47 1

V 2190 10 .4.4 10 -0.47 10

Cr 2171 10 -2"2 10 .2 100.5

Fe 1810 10 .4.5 10 .2.2 100.4

Co 1765 10 -5"1 10 -2"1 10

Ni 1726 10 .3.4 10 -2"1 10

Be 1556 10 -3.4 10 .3 10 .6

Li 1000 10 -1"6 10 -3 10 .8

Process Selection Considerations

The major melting and casting techniques currently used in the pro-

duction of superalloy materials have each been separately discussed. The

principal commercial techniques that have been reviewed are vacuum induc-

tion melting, vacuum arc melting, and investment casting. In addition to

these, the discussion has included electroslag melting, which has found

only limited commercial acceptance to date, and electron-beam melting

which has not yet been used for the commercial production of superalloy

materials but is believed to have sufficient potential to be included in this

discussion. The remaining task is the comparison of the various melting

and casting techniques for specific applications.

The choice of melting techniques for superalloys depends upon many

considerations including the characteristics and composition of the alloy in

question as well as the desired characteristics of the finished part. Some

important considerations are the segregation tendency (alloy content) of the

superalloy, the desired ingot size, purity and mechanical property require-

ments, reactivity and vapor pressure of the alloying additions, etc. In

those instances in which a significant cost differential exists between com-

peting processes, cost will certainly influence the choice of a particular
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technique, and at times a compromise must be made between ingot quality

and cost.

In this section consideration is given to various melting and casting

techniques that have become competitors to some degree in the superalloy

industry. An attempt is made to discuss the advantages and disadvantages

inherent in competing processes in an effort to develop a basis for select-

ing the best technique for a given application.

Vacuum melting versus air melting. - A primary reason for the

vacuum melting of superalloys is to lower the gas content of the alloys by

the elimination of potential sources of contamination. The electric-arc

furnace provides three major sources of contamination: refractory cruci-

bles, the slags, and the air atmosphere. In vacuum induction melting_ re-

fractory crucibles are still typically used; however, the slags and the air

are eliminated as potential sources of contamination. In this technique,

oxygen is eliminated as a gaseous product by reactions with carbon or hy-

drogen, and the vacuum system removes the products from the chamber.

In vacuum arc melting, all three sources of contamination are eliminated

since melting is performed under vacuum in a water-cooled copper cruci-
ble. The advantages of low-oxygen-content superalloy materials have been

indicated by Jones( 25} in a study in which he related the rupture life of

Udimet 500 to the oxygen content of the alloy in trace amounts (figure 4).

As the oxygen content is decreased below about 50 ppm, there is a marked

increase in the stress-rupture life of this nickel-base alloy. Decreasing

gas content in these alloys not only improves the high-temperature strength,

but also results in significant increases in ductility and workability as well

as decreasing the transition temperature between ductile and brittle be-
havior and improving electrical and magnetic properties(26). Another ad-

vantage offered by vacuum-melted materials is the extremely beneficial

effect of boron on the mechanical properties of superalloys when it is pres-
ent in trace amounts(26). This effect of boron is noted for both vacuum-

and air-melted materials; however, boron composition is much more easily

controlled in vacuum melting because of the absence of boron-oxygen re-

actions observed in air-melted materials. For vacuum melting, boron may

be added after the melt has been deoxidized. The effect of boron on super-

alloy materials is demonstrated in figure 5 by the increase in stress-

rupture life and ductility in Waspaloy with trace additions of boron. As

little as 15-ppm boron is sufficient to double the stress-rupture life and

percent elongation exhibited by this material.

In addition to decreased gas contents of vacuum-melted materials,

this technique has provided the opportunity for making several minor but

highly significant chemistry modifications. The elimination of manganese

and silicon deoxidants in air-melted materials from nominal compositions

of these materials has provided definite improvements in the high-

temperature properties of superalloys, especially their ductility(27). In

addition to this, the improved ductility of vacuum-melted materials has

provided the opportunity for increasing the total titanium and aluminum
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contents in these materials (27). These constituents participate in the

formation of gamma prime Ni 3 (AI, Ti) to produce significant increases in

the high-temperature strengths of these materials.

It is apparent that vacuum melting represents a significant improve-

ment over air melting for the preparation of superalloy materials, espe-

cially those containing significant amounts of aluminum and titanium. The

sole advantage that air melting has to offer for the preparation of these

materials is its economical operation; vacuum melting is an inherently

more expensive technique than air melting because of the more sophisti-

cated equipment required. Darmara has pointed out that a fair comparison

between air and vacuum melting cannot be determined on the basis of the

cost of the melting operation alone (Z8). Technical considerations, such as

the rigidity of the specifications to be met, must also be considered. With

rigid specifications it would be more difficult to meet these specifications

by air melting than by vacuum melting. A higher volume of scrap material

results for the air-melting route. In this situation the high cost of vacuum

melting will be partially compensated for a decrease in the total volume of

scrap produced. The savings resulting from decreased scrap volumes is

obviously related to the severity of the buyers specifications. Thus,

vacuum-melted material may be economically advantageous for materials

prepared to rigid specifications. In many cases these specifications will

only be met by vacuum-melted materials.

Vacuum induction melting versus vacuum arc remelting. - The two

vacuum-melting techniques differ in practically every respect except that

both are conducted in vacuum atmospheres. It, therefore, is not surpris-

ing that the products produced by each technique are considerably different

with respect to quality and application. The most important justification

for vacuum induction melting is that, of all the melting techniques consid-
• on(26)ered, it provides the greatest degree of control over compositi . The

primary reasons for this are the stirring generated by the eddy currents in

the melt and the long time to complete the refining reactions. Inductive

stirring both homogenizes the melt and brings reactants to the melt-vacuum

interface where reactions can proceed rapidly. The long length of time for

which the charge can be maintained in the molten states provides several

advantages. First, it provides sufficient time for sampling and subsequent

additions to the melt to maintain exact composition. This ability to main-

tain accurate control of composition increases the ability to reduplicate

heats to extremely close specification ranges. Machlin has considered the

kinetics of deoxidation reactions in vacuum induction melting and concluded

that deoxidation occurs in two steps(Zg). The first is by boiling in the melt

and the second by the later elimination of CO at the melt-vacuum interface

by diffusion through the melt adjacent to the interface. During deoxidation,

boiling accounts for the major loss of oxygen from the melt; however, the

second stage (diffusion of CO) is equally important because of the further

decreases in oxygen content of the melt which are possible. Long times are

required for this diffusion-controlled elimination of oxygen from the melt.

For example, it has been reported that about 30 minutes are required to



21

reduce the oxygen content of low-carbon iron from about ZOO to ZO ppm by

induction melting(Z6). Thus, the long melting time made possible by

vacuum induction melting results in lower oxygen contents of these mate-

rials. In addition to these advantages, further advantages are that the de-

gree of superheat to the melt may be controlled closely and that the metal

is cast under conditions which are very similar conventional casting op-

erations(30) The use of the refractory mold for vacuum induction melting

represents a disadvantage in that reactions between the melts and the re-

fractory crucibles are generally observed. The primary reaction observed

is the transfer of oxygen from the refractory crucible to the melt, thus

establishing an equilibrium oxygen content in the melt which corresponds to

the value at which the rate of deoxidation equals the rate of oxidation from
the crucible.

As opposed to the chemistry-related advantages "offered by vacuum

induction melting, vacuum arc remelting offers certain advantages to the

production of superalloy materials which are related to the structure of the

ingots produced. The structural advantages presented by this technique are

in general related to the comparatively small volume of material which is

molten at a given time and the directional nature of the solidification of the

ingot. These two factors result in reduced dendritic segregation and micro-

porosity and, in general, result in columnar grain structures oriented ap-

proximately parallel with the direction of solidification. Vacuum-arc-

melted ingots typically have better mechanical properties than those

prepared by vacuum induction melting. Of particular importance is the in-

creased fabricability of ingots produced by arc melting. The degree of
composition control in vacuum arc melting is considerably restricted be-

cause the electrode must be essentially of the desired composition. Volatile

elements will be removed to some extent and must be overcharged; with

vacuum induction melting, volatile alloying additions can be made just prior

to casting and, if necessary, under an inert gas. Mold reactions are elim-

inated with vacuum arc remelting because of the use of a water-cooled

copper crucible. The reduced segregation and microporosity observed in

vacuum-arc-remelted ingots results in the ability to produce larger ingots;

for highly alloyed superalloys, excessive segregation limits the maximum

ingot size to approximately Z4 in. diameter. Vacuum induction melting on

the other hand is capable of producing sound ingots with low segregation only

for small ingots (under _10 in. sq.)(30).

Because of the different capabilities of these two melting techniques,

the choice of which process to use is rarely difficult and the economics of

the two processes are not generally an important criterion. It is, however,

generally accepted that vacuum induction melting is a more expensive tech-

nique than is vacuum arc remelting.

The trend in recent years has been toward the double vacuum melting

of superalloy materials. The process is started with vacuum-induction-
melted material that is cast into electrodes and then vacuum arc remelted.

This technique is standard operating procedure for the more highly alloyed
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superall0y grades from Incoloy 901 on up. Even such trades as A-Z86* and

V-57 * are frequently melted by this technique. This is especially true when

a high percentage of scrap metal is to be used. Double vacuum melting

combines the advantages of the vacuum-induction and vacuum-arc-melting

techniques. That is, the close composition control afforded by vacuum in-

duction melting is combined with the improved ingot structure provided by

vacuum arc melting.

Vacuum arc remelting versus electroslag remelting. - The two con-

sumable melting techniques are extremely similar in many respects; how-

ever, two features serve to distinguish the two melting techniques. First,

vacuum arc remelting is conducted in a vacuum atmosphere while electro-

slag melting is typically conducted in air under a slag blanket. Second, the

heat source in vacuum arc remelting is a high-temperature arc-plasma

generated between the electrode and the melt, while in electroslag melting

the heat source is a resistively heated molten slag. As opposed to the large

differences in structure of ingots produced by vacuum induction or vacuum

arc melting, the difference between ingots "produced by vacuum arc and

electroslag melting is one of difference in degree. That is, both techniques

produce a directionally solidified product with reduced microsegregation

and porosity; however, both effects are enhanced by electroslag melting.

The increased tendency toward directional solidification in electroslag

melted materials is due to the shallow molten pools typically obtained as

well as to the slag skin that forms on the inside surface of the water-cooled

copper crucible. In addition to these effects, segregation is limited in

electroslag melting because of the more uniform and quiescent melting con-

ditions. Electroslag melting typically results in cleaner macro- and

microstructures in similar size ingots with better uniformity of physical

and mechanical properties. For many materials significant improvements

in hot workability and machinability are experienced for electroslag-melted

materials. The primary problem associated with this technique is the

choice of appropriate slags. Although several slags appear to have general

applicability to many types of materials, the appropriateness of a given

slag must be demonstrated for each material before commercial utilization

can be made. With the slags used to date, the elimination of oxide inclu-

sions from the ingots has typically not been as good as that experienced

with vacuum arc melting.

Economic comparisons between vacuum arc remelting and electroslag

remelting have been made by several investigators. The most recent is

that by Duckworth and Wooding of the British Iron and Steel Research

Association and Consarc Corporation, respectively (31). They have consid-

ered the relative costs of producing Z4-in. diameter ingots under each

technique, assuming that the equipment was designed for the specific purpose

for which it is being used and assuming that all modern techniques of auto-

mation and rapid turnaround have been used. Table 5 compares the annual

operating costs for twin Z4-in. furnaces. It can be seen from this table that

*Iron-base superalloys.
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- ANNUAL OPERATING COSTS VAR AND ESR

TWIN 24-INCH FURNACE INSTALLATION{31)

Unit Cost VAR ESR

Direct Labor Cost - Two Men, 15 Shifts

(one operator and one helper can com-

fortably operate two automated furnaces)

Manufacturing Overhead - U. S. Average

Two Furnaces (including G and A and main-

tenance, lighting, heating, and indirect

services at 140 percent of labor cost)

Melting Power Cost

0.3-0.5 kwh/lb {assuming

average of 0.35 kwh/lb, 1000 lbs/hr,

1.Z_/kwh, 15 shifts per week,

50 weeks per year)

0.4-0.6 kwh/lb (assuming

average of 0.5 kwh/lb, 1250 lbs/hr,

1.2_/kwh, 15 shifts per week,

50 weeks per year)

Cooling Water Cost With Recirculating

Water System

Depreciation 10-Year Straight Line

Based on Installed Capital Cost

(2 VAR 24 in. Furnace, $480,000;

2 ESR 24 in. Furnace, $384, 000;

cost includes furnace power supply,

crucibles, foundation and structural

steel work)

Depreciation 20-Year Straight Line on

Building and Services (assuming

1,000 sq ft per furnace at $25.00

a sq ft capital cost $50,000)

Slag Cost (at 0.4_ per lb of metal

melted, assuming molten slag start)

Total Annual Operating Cost

Total Annual Production, lbs

$ 48,000 $ 48,000

$ 67,000 $ 67,000

$ 23,000

$ 4Z, 500

$ 3,500 $ 4, I00

$ 48, 000

$ 38,400

$ 2,500 $ 2,500

$ 28_ 000

192,000 $ 230,500

5,600,000 7,000,000

Total Cost, cents per pound 3.4 3.3
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TABLE 6. - COST ANALYSIS ESR MULTIPLE AND SINGLE INGOT

MELTING SIX 8-INCH DIAMETER INGOTS(31)

6 ESR Twin 1 Twin Suspension

Unit Suspension Furnaces Multiple Furnace

Labor - 15 Shifts

(three operators and three

helpers to run six furnaces)

(one operator and two helpers

to run multiple furnace)

$144,000

$ 72,000

Manufacturing Overhead

(including G and A, maintenance,

lighting, heating, and indirect

services at 140 percent of labor

cost) $200,000 $I01, 000

Power Cost at 0. 5 kwhr/ib

(melt rate 400 Ibs/hr, 1.2_/kwhr,

15 shifts per week, 50 weeks

per year) $ 86,000 $ 86, 000

Cooling Water Cost with

Recir culating System $ 8, 000 $ 8, 000

Depreciation 10-Year Straight

Line Based on Installed Capital

Cost (6 ESR Furnaces, $495,000;

l Multiple Furnace, $275,000) $ 49,500 $ 27,000

Depreciation 20-Year Straight Line

on Building and Services (assuming

800 sq ft per single furnace and

1600 sq ft for multiple furnace at

$25.00 a sq ft; 6 ESR Furnaces,

$120,000; l Multiple Furnace,

$40,000) $ 6,000 $ 2, 000

Slag Cost (0.4_ per lb of metal

melted, assuming molten slag

start)

Total Operating Cost

Total Production, pounds

Total Cost, cents per pound

$. 57_ Z00

$550,000

3.8

14,300, 000

$ 57_ 200

2.47
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the higher production rate offered by electroslag melting (assumed to be an

average of 25 percent greater because of the pool-volume relationship) is
substantially offset by the higher specific power required and the cost of the

slag itself. The total cost in the United States for high quality slags in the

calcium fluoride-lime-alumina family are estimated at $0. 16 a pound in the

liquid state ready for molten slag starting. With a metal-to-slag ratio of

40 (by weight}, this gives a slag cost of approximately 0.4 cents per pound
of metal melted.

Using this basis of comparison, it can be seen that the electroslag
remelting provides only a slight economic advantage over vacuum arc re-

melting. The economic factors can be weighed more heavily in favor of

electroslag melting, however, if multiple-ingot electroslag melting (previ-

ously discussed) is considered. Table 6 compares the cost of producing

8-in. diameter ingots of high-speed steel. This is a segregation-sensitive

material that is limited by melting-rate considerations to a production rate

of _400 lb per hr for this ingot diameter. The comparison in table 6 is for

the electroslag melting of six ingots in six single-ingot furnaces as opposed

to one multiple-ingot furnace. The economic advantage provided by
multiple-ingot melting is obvious from this table.

The difference between ESR and VAR in cost per pound is generally

not alone sufficient to justify the transfer from vacuum arc to electroslag
melting. In addition, producers of ESR materials have found it difficult to

compete with vacuum-arc-melted products because of rigid specifications

on gas contents and inclusion counts. For these reasons, electroslag melt-

ing has not yet become a serious competitor with vacuum arc melting.

However, significant proper ty improvements (especially hot workability}

have been achieved for several electroslag-melted superalloy materials.

Under these conditions conversion to electroslag melting is favored.

E lectr on beam me lting ver sus other vacuum-melting technique s. -

The primary advantages of electron-beam-melted materials are attribut-

able to the typical high purity of the product resulting from melting in a

high-vacuum environment. Electron-beam-melted materials typically have

higher ductility and lower strengths than materials produced by other

vacuurrrrnelting techniques as a result of the reduced interstitial impurity

content. For the electron beam melting of superalloys of lower strengths

can probably be compensated for by increased aluminum and titanium addi-

tions which should result in improved high-temperature strengths for these
materials.

The classical problem associated with the electron beam melting of

alloys has been the preferential vaporization of the more volatile alloying

additions. This problem certainly exists to some extent for the electron

be'am melting of superalloys; however, some preliminary studies at

Airco-Temescal suggest that the vaporization loss of most elements is not

as serious a problem as would be calculated from thermodynamic consid-

erations. The reason for this behavior appears to be that the molten alloys
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in many instances do not represent a reasonable approximation to ideal

solutions, but rather interactions between the various elements in the melt

result in more stable species than expected. The hearth melting furnace

developed at Airco-Temescal provides an advantage for the handling of

volatile alloying additions, in that these elements can be continuously added

to the melt just ahead of the point at which the molten charge enters the

mold. This restricts vaporization loss by minimizing the length of time for

which these elements are exposed to the high-vacuum atmosphere.

Another approach to minimizing vaporization loss of alloying addi-

tions is melting under the higher pressures possible with plasma electron

beam melting. However, operating at higher pressures can be expected to

produce a slightly lower-purity product than can be produced by high-

vacuum electron beam melting. This technique, to some extent, repre-

sents a compromise between the purity produced by high-vacuum electron

beam melting and the composition control achieved by more conventional

low-vacuum-melting technique s.

The economics of electron beam melting on a relatively small scale

are highly unfavorable as compared to other vacuurr_-melting techniques.

However, Hunt and Smith have shown that hearth electron beam melting has

a very favorable scale-up potential and that for large-scale melting opera-

tions, electron beam melting may compete with the more standard vacuum-

meiting processes on an economic basis(32). Tabie 7 shows the approxi-

mate distribution of operating costs for typicalmedium- and large-scale

electron-beam processing systems by their analysis. This treatment is for

the melting of iron-base alloys; however, the comparison to nickel-base

superalioys is expected to be good. The smallest scale unit, capable of

producing 15,000 tons per year at 2000 kw of electron beam power, has an

operating cost of just under 2. 50 cents per pound. This cost is reduced to

less than 1.0 cent per pound for a 10,000 kw furnace capable of 100,000

tons per year.

Table 8 shows the estimated installed capital costs for the units in

table 7. Note that the cost per pound as well as the cost of the electron-

beam systems, relative to the vacuum and materials-handling systems, de-

creases with the size of the unit. For the 10,000 kw furnace the operating

cost plus capital equipment costs would result in a total cost of approxi-

mately 5.0 cents per pound. At this cost it will compete favorably with

vacuum induction melting for the production of superalloy materials (33).

Vacuum casting versus other techniques. - In this section we con-

sider the relationship of vacuum-casting costs to those of other methods of

making a part. Technical requirements are sometimes overriding, and

then no method but vacuum casting will suffice. But sometimes there is a

choice, depending greatly on the size of the production run. Determination

of the cross-over point between precision casting and other processing is

an important step in determining the choice of method. (34)
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TABLE 7. - APPROXIMATE DISTRIBUTIONOF OPERATING COSTSFOR
A TYPICAL FAMILY OF SINGLE MEDIUM- AND LARGE-

SCALE ELECTRON-BEAM PROCESSING SYSTEMS(32)

Z t 000 kw Capacity (a)

Dollars per Year

10,000 kw Capacity (b)

Labor & overhead 350. 000 500, 000

Utilities 200,000 850,000

Maintenance 150. 000 450,000

Total 700,000 1. 800,000

Cents per Pound

Labor & overhead I. 17 0.25

Utilities 0.67 0.43

Maintenance 0.50 0.22

Total Z. 34 0.90

(a) Specialty steel ingot production 15. 000 tpa.

(b) Stainless steel ingot and slab production, extra-low-carbon grade 100. 000 tpa.

TABLE 8. - ESTIMATED APPROXIMATE CAPITAL COSTS

(INSTALLED) FOR UNITS IN TABLE 7 (32)

Electron-beam systems, $

Vacuum systems, $

Materials-handling systems, $

Total, $

Total. _ per pound

2_ 000 kw Capacity lO t 000 kw Capacity

1,300,000 5,000,000

500,000 1,600,000

700,000 i, 800,000

2,500,000 8,400,000

8.3 4.2
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A typical cost comparison would be made by plotting cost per piece

against the number of pieces to be made. Below, some of the main costs

for making the calculations are tabulated. Figure 6 shows the comparison

for two processes.

Mainly Mainly

Variable Cost Fixed Cost

Machining

Tools and set-up

Tool maintenance

Actual machining

Material costs*

X

X

X

X

Forging

Tools and set-up

Tool maintenance

Actual forging

Material costs*

Machining of final part

(Tools, maintenance,

actual machining timel

Inspection

X

X

X

X X

X

Investment Casting

Tools and set-up for

pattern
Tool maintenance

Actual casting cost

Materials cost

Patterns

Molds, crucibles

Alloy (minus scrap

recoveryl

Machining of final part

Inspection

X

X

X

X Some losses

of material

X

X

X

*Basic cost less scrap credit. Quantity discounts make this cost slightly

variable.
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CHAPTER 5. CURRENT AND POTENTIALLY

IMPORTANT MELTING PROCESSES

Vacuum Induction Melting

During the last 50 years, induction methods have been used widely in

industry for heating and melting metals. An induction-melting circuit is

fundamentally a transformer in which an inductor carrying the alternating

current serves as a primary and the material to be melted is made the sec-

ondary by simply placing the material, or a conductive element containing

the material, in the alternating field of the inductor without any electrical

contact being made. The magnetic field lines of the inductor intercept the

surface of the electrically conductive material being heated and induce

electrical energy in the material. The described heating effect takes place

primarily in the surface layers of the heated material. The depth of pene-

tration of the field is governed by the frequency of the current used to pro-

duce the alternating field.

Because the induction coil is not in contact with the material being

melted, it can be kept at a low temperature. The induction coil is nor-

mally constructed of a hollow conductor through which coolant is continu-

ously circulated. The maximum temperature obtainable for melting is

solely a function of the amount of energy that can be coupled to the mate-

rial being heated, of the materials used in the construction of the furnace,

and of the furnace environment.

Vacuum induction melting is performed in an induction furnace situ-

ated in a vacuum chamber. Its chief advantages are simplicity and an

ability to control composition very closely. Normally an ordinary refrac-

tory crucible and standard ingot molds are employed. In vacuum induction

melting, certain alloying additions, not possible in air, can be made to the

melt. Because the melt is stirred by induced currents, equilibrium con-

ditions can be achieved soon after alloying additions are made.

The principal disadvantages of vacuum induction melting concern the

crucible and the structures obtained in castings. At low pressures the re-

actions between the melt and the crucible proceed at a much more rapid

rate than at atmospheric pressure; as a consequence, a higher level of im-

purities from the crucible is often observed in vacuum-induction melts than

in air-induction melts. In casting, center segregation in the solidifying

ingot is another problem. Since melts are tilt-poured into molds and solid-

ification usually proceeds slowly, an ideal solidification pattern is normally

not obtained. The problem can be minimized somewhat by proper mold de-

sign and cooling practice, but, for the most part, it cannot be eliminated

entirely, especially in large ingots.
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The development of vacuum induction melting. - Construction of the

first experimental vacuum-induction furnace is generally believed to have

occurred sometime during the latter part of the 19th century. The adoption

of vacuum induction melting on a production scale, on the other hand, did

not occur until several decades later. The first production vacuum induc-

tion furnaces were small, but by 1939, heats as large as 10,000 pounds

were melted in vacuum furnaces. Unfortunately, the development of high-

speed, high-vacuum pumping systems did not match progress in furnace

design; consequently, the fullest benefits of the process were not realized

at that time, since pressures of less than 2 mmmercury could not be

maintained.

The oil-diffusion pump was developed about the time of the introduc-

tion of the first production vacuum-induction furnace. Early oil-diffusion

pumps permitted furnaces to be operated at considerably lower pressures,

but melt sizes were limited to a few pounds. Requirements for high-

vacuum pumping installations for nuclear and medical applications during

World War II led to the development of mechanical and oil-diffusion pumps

offering much greater speed and reliability which, in turn, permitted the

processing of larger melts at very low pressures.

One of the greatest advances in vacuum induction melting occurred in

the early 1950's when a major supplier of bucket forgings for jet engines

was experiencing difficulty in obtaining air-melted high-temperature alloy

bar stock with properties consistent from heat to heat. This was a serious

problem since ingot forgeability and resultant mechanical properties (i. e. ,

stress-rupture life) varied considerably. Consequently, scrap rates were

excessive and production schedules were impossible to meet. The alloys

with the widest scatter were nickel-based alloys containing appreciable

quantities of aluminum and titanium present as precipitation-hardening

agents. Because of the extremely active nature of aluminum and titanium,

it was suggested that vacuum melting might be employed to prevent the

oxidation of these elements in an uncontrollable manner during the alloying

and the pouring of the ingot. Several heats of Waspaloy prepared by

vacuum induction melting were evaluated. The results were excellent.

Not only was more consistency in physical properties obtained, but also the

average stress-rupture life was increased by a considerable amount. As

melting practices were improved, properties continued to increase to the

point where the specification for Waspaloy was raised considerably.

It was not long before the distinct advantages of vacuum melting led

aircraft manufacturers to specify vacuum-induction-melted alloys for

buckets and blades. The demand for this material rose sharply, and

larger furnaces were installed by superalloyproducers. Before long, im-

proved alloys were also developed. They had not only superior stress-

rupture properties but also improved tensile strength at elevated temper-

atures. These properties made them attractive to designers of structural

members in the missile field.
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Furnace designs. - Two basic types of induction melting furnaces ex-

ist and both have been in use for over 50 years with only slight modifications

in basic design. These are the core-type and the coreless-type induction

melting furnaces.

A cut-away view of the core-type furnace is shown in figure 7. This

furnace operates at power-line frequencies. It was developed originally

for melting brass but has become popular for copper, bronzes, zinc, and

aluminum. Recent design improvements have made this furnace suitable

for melting iron-based alloys; only a few superalloys have been melted in

this type furnace.

Heat for melting in the core-type furnace is produced by utilizing the

principle of the short-circuited iron-core transformer. Alternating cur-

rent is passed through a multiple-turn primary coil surrounding an iron

core. The secondary is a loop of molten metal surrounding the primary and

the core. Current flowing through the primary induces a much larger cur-

rent in the metal loop whose resistance creates heat for melting.

The core-type furnace is the most efficient type of induction furnace

because its iron core concentrates magnetic flux in the area of the molten

loop, assuring maximum power transfer from primary to secondary. How-

ever, the essential loop of metal must be maintained continuously in the

core-type furnace. If the loop is allowed to freeze, extreme care is nec-

essary in remelting, because it may rupture and disrupt the circuit. Con-

sequently, core-type furnaces are rarely permitted to cool.

The coreless induction furnace is shown in figure 8. This furnace

operates at low, intermediate, and high frequencies - from 60 to 10,000

cps - and is unmatched for flexibility. Like the core-type furnace, it op-

erates by transformer action, but in this case it is similar to an air core

transformer. The primary coil induces current directly in the metal

charge that is contained in an unobstructed crucible. There is no internal

melting loop. The primary is a water-cooled, helical copper coil sur-

rounding the outside of the crucible.

The cordless furnace can be started from cold, allowing it to be

shut down as desired, and usually is emptied completely by pouring, greatly

simplifying alloy changes. Superalloy melting is normally performed in

coreless induction furnaces. The following discussions refer principally to

corele s s induction fur nace s.

Another way of classifying induction furnaces is by the manner in

which the molten charge is poured. Charges are normally either bottom-

poured or tilt-poured. Furnace designs involving bottom pouring were

popular in the early development of induction melting.

Today production furnaces are all of the tilt-pour design. These fur-

naces can be divided into those where only the crucible tilts and those
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where the whole furnace chamber tilts. Cited advantages of the former are

good visibility of the process during operation, ease of making additions,

and good control during pouring. A schematic drawing of a furnace in which

the crucible tilts is shown in figure 9.

The general design of an induction furnace depends upon its intended

use and the size of the charge that is desired. Regardless of the size of the

furnace, however, certain elements are basic to the design of all induction

furnaces. These elements include the power supply, the crucible, the ingot

mold and hearth, the furnace tank, the vacuum system, and auxiliary

apparatus.

Power supplies: In general, the vacuum induction furnace is similar

in design to its air-melting counterpart, except that the coil voltage rarely

exceeds 450 V. The voltage is kept low to prevent corona and arcing, which

tend to occur in vacuum at pressures in the range 10 to 500 microns on un-

insulated coils. With the increase in furnace sizes that have occurred in

recent years, however, the need for higher melting power has raised the

coil currents to such values that at 400 V, the conductor size has become

somewhat of a problem.

Coreless 180-cycle induction furnaces employ triplers, or special

transformers, which triple line frequency to 180 cycles. Higher frequen-

cies for melting applications are obtained with the use of water-cooled

motor-generator sets. A good relationship usually exists between the size

of a coreless furnace and its operating frequency. As a rule, a small fur-

nace gives best results at high frequencies and a large furnace works best

at the lower frequencies. A certain frequency is suited for a certain fur-

nace when it gives good fast melting with a gentle stirring action. Too high

or too low frequencies are accompanied by undesirable side effects. For

example, at a frequency lower than ideal, a violent stirring action may

occur that may produce inclusions of slag and refractory particles, as well

as gas pickup. Excessive metal loss may also occur because of the in-

creased surface area of the melt and the oxidation of volatile constituents.

Start-up may be harder, greater care may be necessary in charging, and in

some cases, certain types of scrap, such as chips and turnings, may not be

used for starting. Very important is that the life of the furnace lining can

be reduced considerably by using too low a frequency. _ On the other hand,

if too high a frequency is selected for the size of the furnace, there may be

a complete lack of stirring, uneven heating throughout the charge, excessive

side-wall temperatures, and difficulty in attaining homogeneous melts. A

recommended relationship between furnace size and frequency for alloy

melting is as follows:

*It is not uncommon to reduce the life of the furnace lining by approximately 60 percent.
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Furnace Size, Frequency,

lb per charge cps

2-50 10,000

12-500 3,000

200-4,000 1,000

3,000-15,000 180

8,000-20,000 60

The power requirements of vacuum induction furnaces increase with

the size of the furnace and are influenced by the type of crucible and charge.

To reduce melt-down time so that vacuum treatment of the liquid metal

may begin, the power inputs are often larger than those for similar air-

melting plants. The typical power supply for a furnace of 50 to 60 pounds

capacity is 50 kw. A larger furnace of 5000-pound capacity might use up
to 1100 kw.

Crucibles: Oxide ceramics or graphite are used almost exclusively
for induction furnace crucibles. Because the molten metal reacts with the

refractory, the type of reaction product may influence the choice of mate-

rial. For superalloys, MgO, MgO+MgO. A1203 spinel, and MgO+A1203

have found wide usage. MgO normally gives magnesium as the reaction

product and the magnesium is usually vaporized away under vacuum
conditions.

Crucibles are normally rammed and sintered in the furnace because

crucibles thus formed are less expensive, have longer lives, are safer in

use, and have better properties than prefired crucibles. The ideal crucible

has a smooth, dense surface to reduce the reaction rate with the melt and

is backed by a porous zone thick enough to give adequate thermal insulation

and to allow any movements of the sintered region. The crucible, of

course, must be strong enough to support the charge.

At present, the refractory most widely used for vacuum induction

melting contains 70-percent magnesia and 30-percent alumina. In small

furnaces (up to 300 Ib), crucible lives of 50 or more heats are obtained

with no difficulty. As the furnace size increases, however, the number of

heats that can be made before a lining must be replaced decreases consid-

erably. Much research is currently being done in efforts to increase

crucible life by refractory manufacturers and by vacuum melters. The

rapid growth of induction crucible size has caused a switch from monolithic

linings to all-brick linings to achieve satisfactory service life for crucibles

with capacities in excess of 10 tons. Usually, different grades of refrac-

tories are used for the working linings and backings of crucibles. Fig-

ure 10 shows a crucible containing a duplex lining currently used in a 30-ton

vacuum induction furnace. The service life of brick-lined crucibles ranges

from 25 to 45 heats for furnaces in the 15- and 30-ton capacity range.

Ingot molds and hearth: The molds in which the ingots are cast are

very similar to those used in conventional melting shops; hot topping
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FIGURE 1 0 .  A SCHEMATIC REPRESENTATION O F  A 30-TON 
INDUCTION CRUCIBLE WITH BRICK LININGS 

(Cour tesy  of Latrobe Steel) 
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procedures include the use of refractory-lined hot tops, the use of exother-

mic linings, and the use of electric-arc hot toppings. The field of ingot

casting still requires exploration to take advantage of one of the secondary

features of vacuum melting - the ability to vary the pouring rate through

wide limits with no possibility of contamination from the surrounding atmo-

sphere. Advantages may be gained under certain conditions by very low

pouring rates. Slow pouring can be accomplished with little difficulty in

the vacuum chamber.

Another important aspect of the vacuum furnace is the hearth on

which the molds are placed. In many early furnaces, little attention was

given to the need for sufficient space to enclose the variety of ingot molds

that are needed in production operations. Later, furnaces were improved

considerably. Some included tunnel-like chambers with vacuum locks so

that a procession of ingot molds could be moved into position, poured, and

removed without breaking vacuum in the tank.

Furnace tanks: A tank or metal vessel is required to house the melt,

crucible, molds, and associated equipment. Its size varies with furnace

size and application. Small furnaces are easily enclosed in a vertical tank

with a removable top cover. As furnace sizes increased and furnaces have

been designed specifically for production applications, the vertical tank

proved difficult to service between melts; therefore, most modern furnaces

larger than 300 Ib are enclosed in horizontal tanks, which provide much

better access to the inner parts. A typical tank for a 2,000-1b furnace ap-

proaches iZ ft in diameter; larger furnaces require tanks of even greater

size.

Vacuum system: Several sources of gas must be handled by the pump-

ing system:

(1) The air present within the tank under normal conditions

(2) The air absorbed on tank walls, refractory linings, etc.

(3) Dissolved gases in the charge

(4) Gases resulting from reduction of oxides under vacuum

(5) Air leakage into the furnace.

The vacuum-pumping system must be designed to handle these vari-

ous gas loads over a wide range of pressures. Two basic types of pumps

are required: (1) mechanica/ pumps, to provide the pumping capacity from

atmospheric pressure down to about 200 microns (at lower pressures their

capacity decreases rapidly); and (2) oil-diffusion pumps, to handle gas loads

in the 200-to-1 micron range. Oil-diffusion pumps remove gases from the

chamber and compress them to a pressure such that they can be pumped to

the atmosphere by mechanical pumps. Many diffusion pumps are available
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in a wide range of sizes. It is possible to obtain a single pump to handle all

the gas loads from a 2,000-1b furnace. A slightly different approach is

being used on some larger furnaces. Instead of using one or two large

pumps, several small pumps are connected to a large manifold. An exam-

ple of such an arrangement is shown in figure II. Also, in recent years,

a significant development has been the steam ejector for use in large

vacuum-induction-melting units. Instead of the standard combinations of

mechanical and oil-diffusion booster pumps to cover the entire pressure

range, steam-ejector pumping systems are being employed as roughing

units in combination with oil-diffusion booster pumps.

Auxiliary apparatus: Examples of auxiliary apparatus include devices

for making melt additions, melt samplers, temperature-measuring devices,

and control systems. A very important feature in many vacuum furnaces is

the additions device, which allows controlled quantities of a material to be

added to the crucible at selected times during the melting cycle. Two main

approaches used to make additions are:

(i) A system of cups (within the furnace) whose contents can be

dumped into a chute

(2) A vacuum-locked chamber to hold the additive material.

In the very large furnaces, the second approach is most common.

To be certain that the chemical analysis of the final melt is within de-

sired specifications, samples are normally withdrawn from the melt by

dipping from the crucible and are removed through a vacuum interlock for

spectrographic analysis. For proper control of temperature, two or more

tempe r atur e-measur ement de vice s are employed; dis appear ing- filament

optical pyrometers and high-temperature dipstick thermocouples are com-

monly employed.

Complete reliability of all components is necessary to operate large-

scale vacuum furnaces successfully on a production basis. Unlike conven-

tional air-melting operations (where access is possible to practically all

moving parts at any time), vacuum operations require that the melting fur-

nace, tundishes, molds, and addition makers be isolated in a tank and be

operated by remotely controlled manipulators. Mechanical failure may re-

quire the opening of the furnace for repair, which necessitates freezing the

melt. This can be a costly operation because of lost time and the possibil-

ity of an improper ingot.

Most vacuum-induction melters employ a strict preventive mainte-

nance program. Vacuum seals, bearings, valves, and electrical contacts

are inspected and cleaned at frequent intervals; in some cases this clean-

ing is required after each heat. Dust deposits of evaporated metal, which

collect on all cool surfaces within the melting chamber, are particularly

detrimental and are usually removed after each cycle.
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FIGURE 11. A ROW O F  OIL-DIFFUSION BOOSTER PUMPS 
CONNECTED TO A TANK MANIFOLD 

(Cour tesy  of Latrobe Steel) 
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Control of the melt. - Probably the most important metallurgical

justification for vacuum induction melting is the composition control it pro-

vides. More exact composition control is afforded by vacuum induction

melting than by any of the other known melting techniques. The term

"composition" is meant to include not only the desired alloy additions but

impurities as well. This control is achieved by vacuum induction melting

because of the following capabilities:

(1) The ability to isolate the melt so that it can be treated

as a system in the thermodynamic sense (Vacuum

induction melting does this by preventing gases from

outside the system from contaminating gases in the

system. )

(2) The ability to control the pressure within the system

(3) Inductive stirring of the melt

(4) The flexibility to allow sufficient time for refining

reactions to go to completion.

The advantages of vacuum induction melting accrue from these capa-

bilities. In the simplest case, the melt is prevented from coming in contact

with oxygen and nitrogen from the outside. Because of the lower pressure,

i.e., by melting under a gas at pressures lower than atmospheric, it is pos-

sible to carry out reactions that, again, are not possible at atmospheric

pressures. Inductive stirring plays two important roles. It homogenizes

the melt composition, and it brings reactants to the melt-vacuum interface

where the reaction can proceed rapidly to completion. The final capability,

that of allowing time for the reaction to proceed, is extremely important

and has not been sufficiently appreciated in the past. Because of the im-

portance of vacuum-induction refining and the thermodynamic aspects of the

process, these areas are discussed separately in another section.

Vacuum Arc Melting

In the vacuum-arc-melting process, the thermal energy of an electric

arc is utilized in melting. Characteristically the arcs are high-current,

low-voltage discharges. Purification and shaping of desired compositions

are accomplished by melting the materials in vacuum and containing them

in cooled metallic crucibles (generally water-cooled copper). The process

consists of applying the arc heat to the surface of the molten metaliic mass

for a finite time in an atmosphere which has impurity partial pressures

lower than that of the molten metal. These conditions result in the vapori-

zation and removal of selected impurities from the metalunder treatment.

In addition, the large thermai gradients which exist between the chilled

metallic crucible and the intensely hot melt surface cause directional solid-

ification. This directional solidification is parallel with the heat flux and
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results generally in a columnar grain structure. As a result, casting de-

fects, such as gas holes and shrinkage cavities, are virtually eliminated.

The process is normally carried out in a cylindrically-shaped crucible that

is essentially a container inert to the metal under treatment.

Vacuum arc melting was originally devised for refractory metals

{tungsten, tantalum, molybdenum} that are difficult to melt because of their

high melting points, and for extremely reactive metals, such as titanium,

hafnium, and zirconium. In recent years, the process has gained wide ac-

ceptance in the purification and structure control of the more common and

commercially important metals (such as iron- and nickel-base superalloys}

in spite of the fact that their melting points and chemical reactivities render

them amenable to a number of more conventional melting and casting

technique s.

The development of vacuum arc melting. - The starting point for the

development of vacuum arc melting is usually credited to Sir Humphrey

Davy, who produced the first man-made arc between carbon points. Robert

Hare was probably the first person to apply the electric arc for metallurg-

ical applications when, in 18B9, he melted platinum and produced phos-

phorus, graphite, and calcium by chemical reactions in an electric arc

within an evacuated enclosure. A furnace design, similar to that being used

today for melting steel, was developed by Sir Walter Siemens in 1878

shortly after the invention of the dynamo. Siemen's furnace utilized carbon

electrodes, a ceramic hearth, and an air-slag atmosphere.

In the early 1900's, vonBolton built the forerunner of the modern

vacuum-arc-melting furnace. The three salient features of the original

vonBolton furnace were the same as those utilized in present-day vacuum-

arc furnaces; namely, {1} a high-temperature electric arc as a heat source,

(Z} a water-cooled, metallic platen or crucible to support the molten metal,

and {B} a vacuum or inert-atmosphere enclosure in which the melting is

carried out.

In vonBolton's design, as in present-day furnaces, the initial molten

metal solidified the instant it came in contact with the highly cooled cruci-

ble. This solidified metal formed a shell or "skull" inside the original

metallic crucible and subsequently functioned as the melting vessel itself.

The molten metal was contained in the skull, and no interaction with or

deterioration of the original liquid-cooled crucible occurred. The elec-

trode that vonBolton used was not carbon, as earlier experimenters had

used, but rather it was made of the metal to be melted.

Because of the heat generated in the electric arc, the electrode

melted off in the form of very fine droplets. These droplets passed through

the intense heat of the electric arc and accumulated as a molten pool in the

skull, which was contained in the crucible. The crucible was part of the

furnace structure, and the skull became an integral part of the metallic

ingot being produced.
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In 1935, R. K. Hopkins first utilized the cold-crucible principle and

a consumable electrode in a large-scale commercial application. The re-

sulting process, known as the Hopkins Process, was a departure from

vacuum arc melting in that the molten metallic pool was not exposed to a

vacuum but was covered by a molten flux which protected it from atmo-

spheric contamination. In addition, the arc heating was replaced by re-

sistive heating of the molten flux by the passage of the melting current.

This commercially practiced melting technique, which is also known as

the electroslag process or the electroflux-remelting process, is being used

today to produce high-quality iron- and nickel-base alloys

In the same period, work was initiated by several investigators which

eventually led to the technique as we know it today. Among these was

Wilhelm J. Kroll who developed a technique to produce titanium ingots.

The technique included the use of an inert atmosphere, a preformed con-

sumable electrode, and a water-cooled metallic crucible.

During the 1950's, when improved vacuum equipment became avail-

able, interest in the purification and microstructural control of alloy steels

and superalloys increased considerably. By 1960, 150 million pounds of

specialty steels and superalloys were being produced annually. Typical

ingot sizes increased to 50-60 inches in diameter and weighed 50,000 to

80,000 pounds. During the 1960's, little was done to improve the basic

process, although notable improvements in equipment, capacity, and capa-

bilities occurred. Also important was the rebirth of interest in the

Hopkins' process.

Furnace designs. - Four common types of arc-melting furnaces are

used today: (1) the consumable-electrode arc melting furnace, (2) the

nonconsumable- or inert-electrode arc-melting furnace, (3) the skull arc-

melting furnace, and (4) the electroslag or electroflux-remelting furnace.

The most widely used design is the consumable-electrode arc-melt-

ing furnace. In this design, the electric arc is maintained between the

molten metal in the crucible and a preformed bar (electrode) of the metallic

raw material. As melting proceeds, the crucible is filled with metal by

the transfer of liquid drops through the arc from the raw-material electrode.

Figure 12 is a schematic drawing of a typical cold-crucible, consumable-

electrode arc-melting furnace. This furnace is used extensively to produce

ingots of various steels, superalloys, reactive metals, and refractory

metals.

The inert- or nonconsumable-electrode arc-melting furnace, which

is the second important design, produces an ingot microstructure that is

characteristic of high-thermal-gradient materials. In this furnace, the

electric arc is maintained between the molten metal in the crucible and a

refractory nonconsumable electrode, such as thoriated tungsten. The

electrode is neither consumed nor does it take part in any reaction; it only

supplies the arc current. Thus, the process has been called inert-

electrode arc melting. To minimize electrode vaporization, the melting
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process is usually performed in an inert-gas atmosphere rather than in a

vacuum. The raw materials, usually in the form of discrete particles, are

supplied to the melting crucible by an auxiliary feeding device. This form

of arc melting is particularly adaptable to the laboratory preparation of a

large number of compositions in the form of small ingots, i.e., buttons

that can be easily homogenized in a relatively short time. A typical design

of this type of furnace is shown in figure 13.

The third arc-furnace design, the skull furnace, was developed to

produce shaped castings. In this furnace, a given quantity of metal is

rapidly melted in a chilled crucible and poured into a mold cavity to pro-

duce the shaped casting. A directional structure in ingots is not produced.

The resulting castings are subject to defects as found in conventional cast-

ing, such as shrinkage holes, gas holes, and hot tears. Generally, the

raw material is added as a consumable electrode, the chilled crucible is a

relatively shallow vessel, and the entire process (including metal pouring}

is carried out in a vacuum. After the metal has been poured, a solid crust

or skull of the melted and cast metal remains in the chilled crucible. A

schematic drawing of a typical skull arc-melting furnace is shown in

figure 14.

The electroslag furnace is actually not an arc-melting furnace at all;

it is included here because the equipment, the raw materials, and the re-

sulting metallurgical products are similar to those of the vacuum-arc-

melting process. The principal difference between the two processes lies

in the method of heat generation. The electroflux technique does not

utilize the intense heat of the electric arc as does normal arc melting.

Instead, it depends upon the resistance heating (IZR losses) of a molten

flux which is interposed between the molten metallic pool (contained in a

water-cooled copper crucible) and the consumable electrode. The melting

current (AC or DC) passes down the electrode, through the molten flux

(which has a higher electrical resistance), and on through the molten-pool

and the solidified portion of the ingot. It then flows into the copper cruci-

ble and back to the power supply.

Heat generation: The heat utilized in the arc-melting process is

generated by an electric arc between two metallic conductors. An arc is

an intensely hot body of ionized elemental species through which a rela-

tively high current is passing. At currents greater than 100 amperes this

arc is characterized by a total voltage drop in the range of 20 to 45 volts.

In the most conventional system in use today (shown in figure 15),

direct current is used and the solid electrode has negative polarity. This

negative electrode is heated principally by the direct impingement of posi-

tive ions; the anode or molten pool receives its greatest amount of heat by

conduction from the plasma in the positive column. The arc plasma

column is heated by the kinetic energy gained by electrons in the cathode

fall and by ohmic heating in the collision-dominated region.
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The voltage drop of the arc depends on the emission characteristics

of the cathode, the plasma electron density, the length of arc, and very

slightly on the arc current. Significant physical properties of the materials

include ionization potentials, work function (for cathode) vaporization point,

thermal conductivity, and heat of vaporization. The arc plasma is ionized

partly by the energetic cathode fall electrons, and partly by thermal pro-

cesses. The amount of heat generated is related directly to the arc cur-

rent. The currents that are commonly emploYed in arc melting are in the

kilo-amperage range. Direct resistance heating of the electrode is a sec-

ondary heating mechanism which is of little importance in terms of the

quantity of heat generated.

The power required to arc-melt depends directly on the melting

point, the specific heat, the heat of fusion, and the thermal conductivity of

the metal or alloy under consideration. Once the melting power has been

established for a given crucible size and metal, several additional mea-

sures can be used to affect the electrode melt-off rate, which controls the

rate of the process. A maximum electrode melt-off rate is desired for

high production rates with the attendant minimization of impurity removal;

a minimum melt-off rate, on the other hand, yields the maximum molten-

metal residence time which in turn results in maximum vacuum purification.

The electrode melt-off rate can be altered (independent of the pri-

mary arc-r_elting power) in the following ways:

(i) By varying the electrode diameter (Larger diameter elec-

trodes yie]d lower melt rates because of increased current

and heat-carrying capacity. )

(2) By increasing the density of the electrode (Lower melt rates

are obtained by lowering the electrode's resistivity and,

thus, its internal heat generation by I2R losses. This

method is very useful when utilizing pressed-powder elec-

trodes as for casting refractory and reactive metals, but

it is not applicable to cast electrodes. )

(3) By adding gaseous elements which either change the voltage

characteristics of the arc or redistribute the heat dissipa-

tion between the anode and cathode surfaces (Diatomic gases,

such as hydrogen, are effective.)

(4) By decreasing the ratio of crucible diameter to electrode

diameter (A decrease in the amount of radiant energy re-

ceived by the electrode is obtained. This results in a

decrease in the melt-off rate for a given electrode size.

Very striking effects are obtained, particularly in the case

of the highly refractory metals. )
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(5) By adding a material which is a good thermionic emitter,

i. e., one with a low work function, to the consumable
electrode (An appreciable decrease in the melt-off rate

can be achieved. Very small quantities of both elements

and compounds have been used successfully. Yttrium and

thorium oxide have been used successfully to lower the

electrode melt-off rate and have resulted in ingots having
residual impurities which are almost undetectable. ).

Electrical power supplies: Direct-current supplies are used for the

majority of modern arc furnaces. The specific power levels and combi-

nations of melting voltage and amperage vary somewhat with the specific

objective of the melting operation. In addition, melting voltage is charac-

teristic of the material being melted and can only be varied between spe-

cific limits to achieve special effects, e.g., improved ingot side walls are

obtained by operating with the highest voltages specified for a given
element.

The electrical power supply for successful arc melting must have

high current capacity and be able to maintain a relatively constant cur-

rent independent of the load and the changing impedance of the arc. In the

early commercial installation, dc welding generators in parallel were

commonly employed, but today new installations utilize solid-state recti-

fication to obtain the desired direct current. Selenium and germanium

rectifier banks were also used with some success in the past. Today,

high-temperature silicon rectifiers are the most acceptable for this ap-

plication. An open circuit voltage of 80 to 90 volts is required for these

units (1) to start the arc, and (2) to maintain the electrical discharge
throughout the melt.

The arc is started by bringing the electrode into direct contact with

some raw material placed in the melting crucible. At the point of con-
tact, the I2R losses quickly generate sufficient heat to cause fusion and

the direct short is broken in a manner similar to the melting of a fuse

link. The arc is thus initiated without the benefit of a high-voltage spark,

and an open circuit voltage of only 100 volts or less is required. In

most cases, an open circuit voltage about double the normal operating
voltage is necessary to insure continuous arc operation during discharge

fluctuations. Discharge fluctuations are often caused by density and

compositional inhomogeneities of the electrode.

Arc-length control: Apart from the supply of power, the major

electrical installation is usually the arc-length control. Although the

melting operation may be controlled by an observer viewing the arc

optically, some automatic method of control is normally employed.

Automatic control, more convenient and consistent, frees the operator to

concentrate on the other factors involved in the arc-melting process.
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Visual observation of the arc is important, however_ and provision

for this is usually made even when automatic devices are included. The

beginning and end of the melting operation are very important and must be

closely watched - the beginning_ to see that the arc is struck satisfactorily

between the metal plug and the tip of the electrode, and the end (when the

current is reduced to allow the ingot top to solidify fairly slowly) to reduce

shrinkage cavities. During normal operation, no process indicator can

signal unusual conditions as quickly nor can any built-in safety system be

so versatile as a skilled observer. It is usual for the observer to be sepa-

rated from the furnace behind blast walls; the arc is observed by means of

a remote television camera or a periscope arranged to look down the sides

of the electrode. Since it is often advantageous to be able to see both sides

of the electrode_ two-mirror systems are sometimes employed.

Electrode arc-length control and drive systems are areas of vacuum

arc-furnace technology that have received much attention in recent years

and in which there is much controversy among furnace manufacturers.

Several different designs are available. Many drive systems are hydraulic

and control systems are solid-state. Sometimes the drive system that

feeds the electrode to the arc is assisted by a stinger rod which is intro-

duced into the furnace chamber through dynamic vacuum seals. In this

case_ clamping beads are used to connect the consumable electrode to the

stinger rod. A common control system depends on arc pulses that occur

in the arc voltage during melting. This system operates on the principle

or premise that the frequency and magnitude of positive arc pulses are a

direct function of the arc length and hence the molten-metal-transfer rate.

One newer design employs the "phantom" (transient, millisecond-

duration} short-circuit conditions within the arc zone as a control refer-

ence. This design is based upon the relationship that appears to exist

between the arc-length dimension and the phantom short-circuit charac-

teristics. Such a design is said to regulate accurately the arc length re-

gardless of arc-voltage_ arc-current_ or vacuum-pressure variations.

Crucibles: Broadly speaking_ a vacuum-arc-melting crucible is

essentially a copper tube, which can be fabricated by extruding_ rolling_

or welding copper plate_ or by electrodepositing seamless copper.

Flanges on crucibles are commonly made of low-carbon steel_ stainless

steel_ or copper. Crucibles are often tapered slightly to facilitate

stripping.

The crucible serves four distinct functions:

(1) It holds liquid metal during progressive solidification

into ingot form.

(2) It transfers heat through the wall and bottom to the sur-

rounding water jacket.



53

(3) It transmits electrical power through the top flange and
tube to the bottom cover and thus establishes an electri-

cal path to the electrode.

(4) It serves as an evacuated vessel capable of holding re-

duced pressures or atmospheres for the melting operation.

A variety of crucible problems may occur in the melt shop. One ma-

jor problem is mechanical, thermal, or metallurgical damage caused by

hung or stuck ingots.

Another problem is the curved or banana-shaped crucible caused by

poor crucible handling or by mechanically abusing the crucible while at-

tempting to remove an ingot; still another problem is cracks in the tube

wall as a result of improper welding.

Vacuum-ar c-melting operations. - Many vacuum-ar c-melting facil-

ities exist in the United States. In many cases, the designs of these facil-

ities differ because of technological changes and the different needs of the

various metal producers. A broad classification of facility designs may

be made according to furnace manufacturers. The majority of commercial

furnaces have been designed and installed by three manufacturers -

Lectromelt Furnace Division of Pecor Corporation, the Consarc Corpora-

tion, and Leybold-Heraeus, Inc. A few facilities were designed and con-

structed by the metals producers themselves or contracted by them to
other firms.

Most newer furnace designs incorporate dual melting station ar-

rangements. This design makes it possible to make preparations for

melting at one station while melting is being carried out in the other. Fast

turnaround times (from arc-out to arc-strike in the alternate melt station}

is a feature of this design.

Various vacuum-arc-melting facility designs are shown in figures 16,

17, and 18. Most leading superalloyproducers possess a series of

consumable-electrode vacuum-arc-melting furnaces usually of different

designs.
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E le ctro s lag R ernelting

The development of electroslag remelting. - In 1940, R. K. Hopkins

was granted a patent on a technique called "The Kellogg Electric Ingot

Process". This was the first commercial application of consumable elec-

troslag remelting (ESR) in the United States. The original Hopkins

Process, as it was later called, utilized tubular electrodes which were

continuously formed from a coil of strip with the proper base composi-

tion(35). For example, iron-base alloys were prepared using electrodes

made from AISI 1010 strip, and nickel strip was used for the preparation

of nickel-base alloys. Granular alloying additions were made through the

tubular electrodes at a rate necessary to produce the desired final compo-

sition. Fluxes needed to form the desired slag blanket were also added as

melting proceeded.

The tubular-electrode concept was successfully used for many years,

with improvements being made from time to time. This process, how-

ever, had one serious shortcoming. Users periodically found strip inclu-

sions in the finished products. These defects were ultimately traced to

fragments of the tubular electrode which were trapped in the solidifying

metal. Certain modifications of melting techniques were instrumental in

minimizing the strip inclusions; however, they were never completely

eliminated. Thus, in the early 1950's, solid electrodes were substituted

for the tubular electrodes previously used, and the addition of granular

alloying elements was abandoned in favor of the use of the solid electrode

of approximately of the desired composition.

In early work with the Hopkins process, most of the steels produced

were stainless Type 300 and Type 400 grades. During World War II,

hundreds of tons of steel were made by this process, most of which were

high-speed tool-steel grades supplied in the forged, rolled, and as-cast

conditions. Many special grades were also made, but most of the tonnage

of the stainless types was confined to an alloy developed for welding rods

used for the welding of armor plate.

In 1947, the first high-temperature alloy, 16-25-6 (iron, 16 chro-

mium, 25 nickel, 6 molybdenum) was melted by the electroslag process.

At that time, this alloy was being used in the turbine wheel of the J-33

jet engine. As a result of favorable experience with this alloy, other

high-temperature materials were investigated, and in a relatively short

time it was found that practically any of the high-temperature alloys

could be produced by the ESR process, and with the same success as with

the 16-25-6 alloy.

Encouraged by the findings of some experimental studies, Firth

Sterling acquired all rights to the Hopkins Process and the equipment

from the M. W. Kellogg Company in 1959. Commercial producing and

marketing of various grades of high-quality steels produced by the
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Hopkins Process commenced at Sterling the same year. Sterling licensees

now include Carpenter Steel, Union Electric, and Union Carbide, as well

as Lectromelt (an exclusive licensee for Hopkins Process equipment in the

U. S.) and Heraeus-Engelhard (an exclusive licensee for ESR equipment

outside the U. S.). At the present time, only Firth Sterling and Union

Carbide's Materials Systems Division are now in commercial production.

In 1964, the British Iron and Steel Research Association established

the Electroslag Refining Technology Group(36). Services offered by ESRT

include contract melting, evaluation trials, investigations of slags, and

general consulting. In the U. S., Consarc Inc., the U. S. Licensee of

ESRT, has been selling an electroslag remelting unit since 1966.

More recently the Electroslag Institute has been established (37). The

prime objective of ESI has been to hasten the scaling up and commercializa-

tion of ESR technology. The industry members of ESI share the funding of

the Institute and receive in return improvements in the technology as a re-

sult of Institute research and development. Any developments, improve-

ments, or patent rights acquired by the Institute are extended to all mem-

bers; however, proprietary information acquired by the members need not

be divulged.

Process operation.

Functions of the slag: The heart of the electroslag process and the

feature distinguishing it from other consumable melting techniques is the

use of a molten slag. Under proper controls the slag performs four prime

functions:

• The slag is resistively heated £o accomplish the melting

of a submerged consumable electrode.

• It protects the molten metal from contamination by the

furnace atmosphere.

• It provides a cleansing action to the molten metal.

• It freezes on the walls of the water-cooled copper mold

and isolates the solidifying ingot from the mold.

Each of these functions is discussed in detail below.

The ESR process is essentially an arcless consumable melting pro-

cess in which the heat is derived from the electrical resistance heating of

the molten slag. During the melting operation the electrode is immersed

in the slag and the energy is dissipated in the form of current flowing

through the ionized slag. Although the meltin_ point of the slag is typically

lower than that of the material to be melted (38), the temperature of the

molten slag is normally much higher than the melting point of the electrode
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material. Thus, the slag bath remains molten while the electrode material

is slowly melted away by immersion in the slag bath. Gravitational forces

and the wetting action of the slag result in the continuous melting of the

electrode and the formation of a fine stream of small droplets. These drop-

lets transfer through the slag to the molten-metal pool on the top of the
ingot.

The use of a molten slag as a heat source has several inherent ad-

vantages. The temperature surrounding the electrode, being relatively

stable, results in uniform and predictable melting rates in electroslag fur-

naces. A second advantage of slag heating is that the temperature across

the cross section of the ingot is fairly uniform and subject to control. The

melting rates can be controlled to give shallow and relatively flat molten

pools under the slag. This increases the tendency for axial solidification

of the ingot, thus, decreasing the tendency for microsegregation and pro-

moting flotation of light-weight nonmetallic inclusions. A third factor

associated with the use of the slag heating is a decreasing tendency toward

microporosity and piping. This is apparently related to the hot top action

of the molten slag as well as to the directional nature of solidification.

The protection from the furnace atmosphere provided by the presence

of molten slag atop the solidifying ingot has, for many materials, provided

the opportunity to electroslag-melt in an air atmosphere rather than under

vacuum. Air electroslag melting has been routinely used for many steels

and nickel-base superalloys; however, the melting of highly reactive ma-

terials such as titanium or of materials containing significant amounts of

titanium or aluminum is generally conducted in vacuum atmospheres.

The purifying or cleansing action provided by the slag is dependent

primarily upon the chemical composition of the slag. Calcium fluoride

is a good choice of slag for many applications. It can, however, be im-

proved by additions of up to 30-percent CaO for sulphur and phosphorus

removal or of alumina for increased resistance and higher melting points,

and for removal of silica inclusions(39}. The density of the molten metal

and its wettability by the molten slag control the size of the droplets of

molten metal which move through the slag. It is during this period of

transference through the slag that the droplets may be chemically purified

by the action of the slag. The purifying action is thus enhanced by the

formation of droplets of minimum size, that is, by maximizing the surface-

to-volume ratio of the droplets. In addition, low-melting metals, gaseous

and nonmetallic inclusions may be completely or partially removed from

the remelted metal. Low-boiling-point materials are removed by vapori-

zation, and the gases, by virtue of their higher solubility in the slag than

in the metal, are absorbed in the slag. Low-density, nonmetallic inclu-

sions float up into the molten slag where they are permanently held.

/ks solidification proceeds, the slag freezes on the surface of the

water-cooled copper mold. The frozen slag layer performs two functions.

First, in protecting the solidifying ingot from the mold, it eliminates cold
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shuts and promotes smooth ingots surfaces. Second, as a thermal insulator

it tends to resist axial solidification of the ingots.

Design of the basic Hopkins furnace: Figure 19 is a schematic of the

Hopkins Process showing the principal operating features (35). During

melting the electrode is immersed in the molten slag; the conduction path

during melting is electrode -_ ionized slag -_ molten-metal pool -_ solidified

ingot-_ copper mold. (Electroslag melting can also be operated on alter-

nating current.) The solidified ingot is contained in a water-cooled copper

mold. As solidification proceeds, a thin layer of'slag solidifies against

the mold wall_ and the ingot freezes within the solidified flux skin. Flux is

added at the start of melting and is continually fed into the mold during the

process. Small amounts of alloying additions may be added to control final

ingot compositions.

Electrode motion may be controlled either by a drive wheel mounted

on the shaft of a motor or by a slide operated through a motorized-pulley

arrangement.

Melting procedures: The most widely accepted method of starting the

electroslag operation utilizes powdered flux. A starting plug of the same

composition as the electrode to be melted is placed on top of the water-

cooled copper stool within the copper mold. The electrode is lowered into

the mold and placed in contact with the chips or turnings of the material

that is to be melted on top of the plug, and a predetermined weight of the

powdered flux covers the plug and lower end of the electrode. A minute or

two after power is applied, the flux becomes molten, and the cycle is con-

tinuous until the desired amount of ingot has been melted. An alternative

starting procedure reported by AEI-Birlec(39) consists of pouring pre-

melted slag into the empty mold. Power is applied to the immersed elec-

trode and the molten slag is resistively heated, thus initiating melting of

the electrode. The use of premelted slag tends to eliminate porosity and

roughness at the bottom of the ingot and thereby increases the yield of

good material.

Several interdependent variables affect the metallurgical quality of

the material formed by electroslag melting. Among these are voltage,

current, electrode feed rate, electrode cross section, electrical and ther-

mal conductivity of the slag and depth of the molten slag. These factors

control primarily the heat-transfer characteristics of the system, which

in turn control the grain structure (orientation) of the cast ingot. The heat

transfer characteristics of the system are displayed in the shape of the

molten-metal pool on top of the solidifying ingot. Shallow pools (approach-

ing a planar-growth front) result in axially aligned columnar grains, while

deeply cupped molten pools resulted in radially oriented grains.

Ingot characteristics: Characteristics that reportedly contribute to

the metallurgical quality of electroslag-melted ingots are:
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• Minimized macro- and microsegregation

• Minimized porosity pipe and microshrinkage

• Low nonmetallic-inclusions counts

• Good surface finishes

• Good fabricability.

Careful control of melting conditions must be maintained to achieve

these characteristics.

Segregation is a problem common to all alloy-casting operations;

however, consumable melting techniques have shown a capability to de-

crease both macroscopic and microscopic segregation from that observed

in cast ingots, especially for large-diameter ingots. This difference is

related primarily to the local freezing rate at the liquid-solid interface

which controls the secondary dendrite arm spacing. Large dendrite arm

spacings result in fewer arms for the rejection of solute thereby resulting

in a greater amount of solute rejection per dendrite arm. This in turn, re-

sults in larger pools of solute-rich materials in the solidified ingot. Thus

the degree of segregation is minimized by promoting small interdendritic

arm spacings. It has been established by many investigators that high local

freezing rates promote small interdendritic spacing and thus decrease the

degree of segregation (40). For consumable melting techniques such as ESR

and VAR the local freezing rate is inversely proportional to the rate at

which the electrode is melted, and therefore the dendrite arm spacing (or

the degree of segregation) increases as the melting rate increases.

The electroslag-melting process also provides a potential for de-

creased pipe and microshrinkage porosity. The amount of pipe present in

an electroslag ingot is reduced by two factors. The directional nature of

the solidification, experienced under proper process control, as well as the

hot-top action provided by the resistively heated slag tend to eliminate

central shrinkage pipe. Microshrinkage is typically formed at interden-

drite positions as a result of insufficient feeding of solidification shrinkage

in this area by the molten pool. The highly axial nature of freezing in this

process allows for more efficient feeding of interdendritic shrinkage from

the molten metal pool.

The slag can react with the melt to provide a reduction in nonmetallic

inclusions. However, with the present ._tate of the art of electroslag melt-

ing, the process has frequently not been successful in removing all micro-

scopic oxide (Type "D") inclusions. This problem probably can be over-

come for most materials when appropriate slags are developed.

The excellent ingot surfaces typically produced by electroslag melt-

ing is a direct result of the formation of a thin solidified-slag layer on the
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inside surface of the water-cooled copper mold. The presence of this layer

tends to reduce the formation of cold shuts and rough surfaces.

The grain morphology of electroslag-melted ingots was discussed

earlier. In addition to the advantages already mentioned of the axially

oriented grains resulting from the process, these grains are desirable for

reasons of improved ingot fabricability. ESR ingots typically exhibit im-

proved transverse ductility that frequently results in improved hot-work

ability for ESR materials.

Power requirements: Because the slag is heated by electrical resis-

tance, the power requirements for ESR are very flexible. ESR can be op-

erated by either ac or dc or by a combination of both. With ac melting

there is further choice of single phase or polyphase melting. The power

level required can be altered by changes in slag composition and slag thick-

ness. It can also be adjusted by techniques such as reciprocation of the

mold which can enable reduced power and, hence, reduced temperature to

be used in complex situations(411.

During recent years, the relative merits of ac vs dc power supplies

for ESR melting have been hotly debated. In this country, Firth Sterling

and Union Electric are using dc while the new Consarc continuous furnaces

at Union Carbide's Materials Systems Division are ac. Most overseas fur-

naces use ac. Kobe Steel claims improved desulfurization with ac and

Birlec Ltd. 's ten installations use ac. After 150-160 experimental heats

to evaluate ac versus dc power supply, Mellon Institute tends to favor

ac (37). Because of the similar power requirements, much of the experi-

mental work done on electroslag remelting has been accomplished in con-

verted vacuum arc furnaces. Experiments conducted in these furnaces use

dc power supplies.

A second contested point is the use of three-phase vs single-phase

current. Work at Consarc (Europe/ has established a preference for

single-phase operation for metallurgical reasons(42). With three-phase

operation, the uncontrolled bath motion can cause considerable segregation

which in general is detrimental to the perifery of the ingot. If melt stirring

is required for a specific application, their preference is to use auxiliary

stirring coils.

Electrode characteristics: The electrodes used in electroslag re-

melting can be cast rolled, or forged. For making variously shaped ingots,

electrodes of the ingot shape are usually used; however, this is not a strict

necessity. Slab or tubular ingots have in the past been melted from a series

of solid cylindrical ingots. Even the need to have a consumable electrode

can be avoided in ESR. The charge material can be added in the form of

scrap, powder, or even liquid metal and a nonconsumable electrode is used

to heat the slag.

In the United States the ratio of the diameter of the consumable elec-

trode to that of the mold is normally O. 6 to O. 7(381. Larger diameter
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electrodes may result in problems of arcing between the copper mold and

the electrode. One commercial process uses strip electrodes for casting

4 in. x 4 in. square cross-section ingots (continuous casting).

Commercial furnaces. - The four companies currently engaged in

ESR production in the United States are listed in table 9 with a few basic

facts about the type of furnace employed. ESR furnaces used by these pro-

ducers have been supplied by Firth Sterling, Consarc, and Arcos.

TABLE 9. - DESIGN OF COMMERCIAL ESR UNITS IN THE

UNITED STATES(37)

No. of Max Ingot Size,

Design Units Amperes in. (a)

Firth Sterling F-S 3 12,500 16

I 15,000 20

Cybermetals Arcos 1 -- 4 x 4

Union Carbide Consarc l 17,500 30

Stellite Works l 25,000 30

Union Electric F-S/Heraeus l -- 30

(a) 0nly cylindrical shapes are listed, A number of installations produce slabs and billets also.

Application of electroslag remelting to superalloys.

Justification for projected and current use: Current requirements of

commercial aircraft builders for larger more economicai engines have

placed new demands on the superalloy producers. In addition to the alloy

development required by the higher operating temperatures of larger high-

thrust engines, the producers have been required to supply larger billets of

the superalloys for the production of more massive shapes.

The initial approach to the production of larger billets was to increase

the diameter of the vacuum-arc-remelted ingots. Large vacuum-arc-

remelted ingots, however, have the conspicuous shortcoming that the de-

gree of segregation in the arc-melted ingots increases substantially with in-

creasing diameters. In most instances neither homogenization nor hot

reduction is successful in eliminating this highly segregated condition. To

reduce alloy segregation in VAR production, the technique typically em-

ployed is to decrease the melt rate by reducing the power input to the fur-

nace. However, as the power input is decreased beyond a certain critical

level the ingot surfaces become quite rough and in some cases, cold shuts

are evident. Rougher surfaces tend to hinder subsequent fabrication op-

erations such as roiling or forging, and costly prior preparation of ingots

is required. In highly complex alloys where large amounts of solute are

rejected during solidification, a practical limit of 24-in. diameter ingots

are available with current technology.
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Becauseof the tendencyfor reduced segregation in ESR-produced
materials, the electroslag melting of superalloys may have significant ap-
plication to the production of larger-diameter ingots with minimal
segregation.

Other reasons for selecting the electroslag-melting technique for the
production of various superalloy materials may dependupona variety of
circumstances. Reference is made to the ingot characteristics discussed
in a previous section. When these characteristic_ for a specific superalloy
material represent significant improvements over those experienced for
VAR or induction-melted materials or wheneconomic advantagesexist,
ESRmay be used for the production of that material. Obviously, the use
of ESR for suchmaterials will dependprimarily on the success currently
obtained with VAR or induction-melting techniques.

Current commercial and experimental applications: Unfortunately,
the majority of work conductedin the United States on electroslag melting
has beenveiled in a cloak of secrecy. Several producers are currently in-
volved in experimental studies on electroslag melting, but they have been
extremely reluctant to discuss processing conditions and especially slag
compositions. Onedetailed experimental study, however, has been con-
ducted by Mellon Institute under the sponsorship of the U. S. Air Force(43).
The primary objective of this program was to develop a manufacturing pro-
cess for the electroslag melting of several specific alloys including
18-percent nickelmaraging steel, Ren_41, Inco 713C, and Udimet 700.
Work reported to date on the last three alloys is summarized here as rep-
resenting problems encounteredin the electroslag melting of superalloys.

Rene_41 is a hot-workable nickel-base superalloy. Four-inch diam-
eter, dc-straight-polarity melted ingots of Ren_ 41 were initially made in
a laboratory furnace. The composition of the flux found to be most suc-
cessful for this system is as follows: 30-percent CaF2, 40-percentA1zO3,
17-percent CaO, and 13-percentMgO. Chemical analysis showed that the
recovery of titanium and aluminum, the two most reactive elements in this
alloy, was greater than 95 percent in practically all cases. These4-inch
diameter ingots displayed excellent hot workability as shownby the results
of hammer forging these ingots into 1-in. thick plate. The subsequent
scale-up of ReneW41melting to 7-inch diameter ingot in a production facil-
ity was accomplished with similar results. Recoveries of aluminum and
titanium for this ingot were again 95percent higher, and the ingot was di-
rectly hot-rolled in the as-cast condition on a reversing mill to 1-in. thick
plate. Conversion was accomplished in 14passes with a single reheat

following the fourth pass. Mechanical-property specimens cut from these

rolled plates showed improved room-temperature tensile properties over

those of specimens cut from the electrode material. The material showed

higher room-temperature yield strengths with very good ductility. At

1700 G the ESR material showed slightly lower strength levels, however,

significant increases were observed in both the ductility and reduction in

area.
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Inco 713C is commonly used in the as-cast condition, partially because

of its poor hot workability. The primary objective of studies with this alloy

was to determine if ESR increased the hot workability of the alloy. Four-

inch diameter ESR ingots were made in a laboratory furnace with the pro-

duction of sound ingots. Chemical analysis showed recoveries of aluminum

and titanium at better than 95 and 90 percent, respectively. Hot working of

these ingots was considered partially successful. Direct hot-press forging

was terminated at 50-to 75-percent reduction when severe cracking devel-

oped. One-in. plate was directly hot-rolled from a 4-in. diameter ingot in

six passes without reheat. Severe cracking developed on the surface and

edges of the plate; however, the cracking was in general shallow, and con-

fined mostly from I/8 to 3/16 inch from the plate surface. The estimated

recovery of usable material was 60 percent, and ample material was avail-

able to conduct several mechanical-property tests. These hot-working re-

sults represent an improvement over Inco 713C produced by other melting

techniques. Room-temperature and 1700-F mechanical properties were in

general superior to those of vacuum-melted and vacuum-cast 713C alloy.

Nickel-base superalloy_ Udimet 700, generally shows marginal hot

workability. Four-in. diameter ESR ingots produced by dc straight polar-

ity again have shown titanium and aluminum recoveries greater than 95 and

90 percent, respectively. They have also demonstrated suitable hot work-

ability under conditions of direct hot rolling of 4-in. ingots to l-in. thick

plate. Room-temperature and 1700-F mechanical properties, similar to

those of samples cut from the electrode materials_ showed a slightly lower

yield strength at room temperature and a slightly higher yield strength at

1700 F. Ductilities were greater for the ESR material at room tempera-

ture and slightly less than that of the electrode samples at 1700 F.

These studies at Mellon Institute (43) have shown that sound ingots of

the nickel-base superalloys can be very simply melted by the ESR tech-

nique. These ingots have demonstrated hot workabilities as good or

superior to those obtained with ingots cast by more conventional techniques.

The mechanical properties of the ESR materials are satisfactory and in

some cases superior to similar properties generated from the respective

electrode materials.

Union Carbide's Materials Systems Division is currently commer-

cially producing HastelloyAlloys X_ B_ C, and C-276 as well as Haynes

Alloy25 by the electroslag process. This group has also reported (41) ex-

perimental studies on the application of ESR to Hastelloy Alloys F and I_

and to Alloys HS-31 and HS-6b. All of these alloys suffer from segrega-

tion and ingot defects in air-melted-and-cast ingots. In additlon_ the two

cobalt-base alloys are not readily hot-worked as air-melted ingots. VAR

and ESR techniques were applied to all four alloys with the production of

6-in.-diameter ingots. An ac electroslag furnace was used with CaF 2-

CaO-AI203 slags. ESR has a greater effect than VAR in improving the

cleanliness of the two cobalt-base alloys and produced Hastelloy-F ingots

with significantly lower inclusion counts than those of VAR ingots while

little or no difference in inclusion count was noted for Hastelloy-B.
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Except for Hastelloy-B, ESR improved the hot ductility and forgeability of

all alloys over that observed in VAR ingots. The evaluation of ingot chem-

istry showed that ESR had a tendency to remove highly oxidizable elements

and did not remove hydrogen to the extent noted for VAR.

The Hopkins Process has been used extensively for the commercial

production of the iron-nickel-base alloys 16-25-6 and A-286(38). Firth

Sterling has also reported experimental work on the nickel-base alloys
Waspaloy B, Inconel 625, and Alloy 718(40).

This discussion of superalloy melting by ESR is intended not as a

complete listing of all work in this area, but, rather, as an indication of

some of the superalloy materials that can be produced by the electroslag

process.

Electron Beam Melting

During the last decade electron beam (EB} melting has made the tran-

sition from being a laboratory curiosity to being a standard melting tech-

nique for many materials. The primary applications of EB melting have

centered on the production of high-purity refractory metals, though, some

current work has been directed toward the melting and continuous casting of

steel. Only minimum work has been accomplished on the EB melting of

superalloys. However, it appears that this technique may have certain ad-

vantages for superalloy production in the future and so is included in the

discussion of melting techniques for superalloys.

The basic principal of the EB process is very simple. A heated

cathode in a high-vacuum environment thermionically emits electrons that

are accelerated through a voltage drop. The electron beam, focused by

electric and magnetic fields, bombards the metal to be melted. Upon col-

lision with the metal the electrons lose kinetic energy that is primarily

dissipated as the heat that melts the charge material.

Development of electron beam melting. - Although the potential for

using electron beams as a heat source for melting has been recognized for
over 60 years {45}, the basic developments necessary for commercial util-

ization of this technique have been accomplished primarily within the last

decade. H. R. Smith, of Airco-Temescalhas noted three primary reasons
for this delayed development(46).

• Adequately pumped high-vacuum systems were not routinely
available.

• Power supplies for generating and controlling electron

beams were not available on a large scale and, even for

small work, they were generally unreliable.
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Electron gun designs were based on vacuum-tube designs

and were not rugged enough to withstand pressure ex-

cursions and ion bombardment found in processing

operation.

Recent advances in these three areas have resulted in the current

emphasis placed on electron beam melting. The ability to produce high-

purity refractory.metal ingots with improved ductility (and thus better fab-

ricability) has resulted in almost 100-percent conversion to EB melting

for these metals(46). The development of the electron-beam hearth-melt-

ing furnace during the last several years represents a significant advance

because of the versatility afforded by this process.

Process operation.

Electron guns: Several types of electron guns are in general use for

electron beam melting; however, only two are being used for research and

development as well as for production applications. These are the Pierce-

type gun and the transverse-field linear gun.

The well-known, axially symmetric Pierce-type gun shown in figure

20 has continued to prove popular for laboratory-scale equipment (many

variations of it have been described in the literature) since development

work is not required to construct one. In this gun(47), a dynamic seal

between the gun chamber and the melting chamber keeps the melting cham-

ber free of electrical fields. A low-conductance aperture between the two

chambers allows the passage of the accelerated electrons and at the same

time makes possible a pressure differential between the gun and melting

chambers. A lower pressure thus can be maintained in the gun chamber

to greatly reduce the possibility of accidental glow discharges that occur

during large gas bursts from the melt and that generally reduce ingot

quality. This design also provides good protection against splashes and

vapor deposition on the cathode and provides a long distance between the

electron source and the melt. It also produces a fine, easily focused spot

and lends itself to compact construction.

The Pierce-type guns have found their widest applications in the

European countries. The largest guns of this type normally used are

capable of beam powers of up to 150 to 200 kw at 200 kv, though a single

gun developed by Ardenne in East Germany is rated at 1700 to 2000 kw.

The second type of gun is the transverse-field linear gun(46). These

guns are self accelerating, are simple and rugged in design, and can be

scaled up to virtually any power level desired. The entire unit, shown in

figure 21 is immersed in a magnetic field in which the field lines are

parallel with the filament. The linear beam of electrons which emerges

between the accelerating anodes can be bent and focused by the field as

appropriate to the process. Advances in the control and configuration of

the beam-focusing and deflection fields have permitted much greater
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flexibility in gun location. Current practice is to locate the guns out of the

line of sight of the molten pool so that emitted vapors, gases, and splatter

cannot interfere with gun operation. Guns are usually located in a sepa-

rately pumped chamber which has sufficient pumping capacity to minimize

the effects of pressure excursions in the main chamber.

The largest transverse guns commonly used are rated at _300 kw;

however, this type of gun has a greater scale-up potential than the Pierce-

type gun because of inherent limitations( 46, 47) for Pierce guns. These

maximum powers have apparently not yet been reached.

Vacuum pumping systems: Electron beam processing in most in-

stances requires high vacuums for two reasons. First, the purifying action

observed for EB melting is a direct result of the exposure of large surface

areas of the molten material to the high-vacuum atmosphere. Second, the

EB guns discussed above require high vacuums for efficient operation, ap-

proximately 5 x 10 -4 tort maximum. Because of the generation of gaseous

materials during melting, high pumping capacities are also required in

order to maintain the vacuum.

In both of the guns discussed above, electrons are released from the

cathode by thermionic emission. If the pressure is allowed to rise in the

furnace, a glow discharge will occur due to the ionization of the gas mole-

cules in the furnace, and the current will rise markedly. Since a hot cath-

ode is present, chances are good that an arc will develop(48). If this

happens, either the power supply will be overloaded because of the low re-

sistance of this form of discharge or the gun and fittings will be destroyed

by the violent heat of the arc.

Power supplies: The basic power requirements of an electron beam

melting system are a high-voltage dc source of relatively low current for

the actual melting energy and a thermal emitter supply of much lower ac

voltage and high current. Power requirements for a specific system de-

pends upon the evaporation rates of the material as well as upon its melting

point. The power supply must provide independent voltage and current

control so that a required power input can be achieved by a range of voltage-

current settings(49). Such flexibility provides high-voltage startup and the

subsequent establishment of optimum operating power conditions commen-

surate with the characteristics of the melt stock. The power supply typ-

ically requires currents of 1 to 20 amps at voltages between 3 and Z0 kw.

The only special feature of the filament power supply is that it must

be insulated against high voltage(50). This unit is equipped with an emis-

sion current controller on the cathode which serves to stabilize the opera-

tion, particularly with regard to rapid recovery after a voltage breakdown.

Quality of electron-beam-melted materials: Electron beam melting

purifies metals by the volatilization of impurities. The amount of vola-

tilization depends on (1) the length of time the materials spend in the molten
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state, (2) the pressure of the furnace atmosphere, (3) the temperature of

the molten material, and (4) the composition of the material being melted

(including impurity concentration). The first two conditions represent the

primary reason for the improved purity of EB-melted material over

vacuum-arc or induction-melted materials. EB melting typically is con-

ducted in a much higher vacuum than is arc melting and the molten metal

during EB melting is exposed to the high-vacuum environment for a longer

period of time.

Only those impurities with vapor pressures higher than that of the

base material will be preferentially removed during melting. In the section

dealing with Physicochemical considerations, the feasibility of deoxidizing

a given metal by vacuum melting was evaluated by examining the oxygen-

to-metal ratio in the vapor relative to that in the metal at equilibrium:

[(O/M)vapor/(O/Mmetal]. When this ratio is significantly greater than

unity, e.g. , i00, the metal is subject to efficient deoxidizing by vacuum

melting. When the ratio is above but near unity, the concurrent loss of

metal would be prohibitive. In table I0 the feasibility of purifying a number

of metals by vacuum melting is predicted. The separation of elements into

two groups is based on the data presented in table 4 and that published by

Smith, Hunt, and Hanks(49). It should be noted that the latter data must be

used with discretion because in some instances the important oxygen-

containing vapor species is not the monoxide phase assumed, but elemental

oxygen or a higher oxide. The mechanism of metal oxide volatilization may

be used to advantage in some metallic alloys (49). For example, the deoxi-

dation of molybdenum is possible by the loss of TiO from an alloy of molyb-

denum and titanium. For sufficiently small titanium additions, complete

vaporization of the titanium can also be accomplished during the melting.

TABLE 10. - DEOXIDATION OF METALS BY

VACUUM MELTING

Should Deoxidation Impractical

Deoxidize or Impossible

B Be

Hf Co

Mo Cr

Nb Fe

Si Li

Sm Mn

Ta Ni

Th Ti

W V

Y

Zr
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Thus, molybdenum may be more easily deoxidized by the addition of small

amounts of titanium which forms TiO, a more volatile oxide. Both the

titanium oxide and titanium are subsequently vaporized during the melting

operation.

The electron beam melting of alloys is complicated by the possible

preferential volatilization of alloying elements. Any alloying element

having a higher vapor pressure than the base metal will be removed to

some extent during electron beam melting. The degree of vaporization

loss of alloying elements can, however, be calculated with sufficient accu-

racy for many materials and may be compensated for by overcharging

these elements in the melting stock.

Aside from the higher purities typically observed in EB-melted ma-

terials, ingots of EB-melted materials are characterized by large grains

and poor surface qualit_ 51) Both of these features are a direct result of

the low melting rates that are used to obtain maximum purification. In

addition, electron-beam melted materials typically have lower strengths

and higher ductilities than materials produced by other fabrication tech-

niques. This is primarily due to the decreased interstitial impurity con-

tent in these alloys. This has been especially true for the refractory

metals, and the increased ductility has resulted in increased fabricability

of EB-melted refractory metals. A similar effect has been shown for EB-

melted Type 304 stainless steel as demonstrated by the work-hardening

curves shown in figure 22(5Z).

Furnace designs.

Drip or pool melting: Three melting methods that may be described

as either drip or pool melting and that are currently used on an industrial

scale are schematically illustrated in figure 23. A solid bar may be fed

vertically or horizontally into the beam and drip-melted, or granules may

be fed directly into the molten pool. An open bottom water-cooled copper

mold is typically used and the ingot is withdrawn through the bottom so that

the molten-metal pool is always on the upper rim of the mold. In figure 23

these melting methods are represented with Pierce-type electron beam

guns; however, remote transverse guns may also be used. In this case

magnetic fields are used to focus the electron beam onto the feed material

and the molten bath. A variation of the bath-melting technique is the use

of a solid-bottom water-cooled copper crucible. During melting a solid

skull of the material melted forms on the surface of the crucible and pre-

vents crucible reactions. Once a sufficient amount of molten material is

produced, it can be tilt-poured into a mold of the desired configuration.

The largest existing electron beam furnace is of the drip-melting

type(53). This furnace, located in East Germany, operates at a power

rating of 1.7 megawatts, and is primarily used to drip-melt steel-alloy

ingots about 30 inches in diameter and an estimated 10 feet long, weighing up

to about 13 tons. On the basis of the performance of this unit, a 7 mega-

watt drip-melting unit is projected.
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Cold-hearth melting (46,54,55): A schematic of the hearth furnace

developed at Airco-Temescal is shown in figure Z4. Because of the hearth

configuration it is possible to feed charge material into the furnace in al-

most any form including ingots, powders, chunks of scrap metal, or turn-

ings. Initial melting is performed in the melting zone and the gross

impurities including dissolved gases and volatile metallic contaminants

are eliminated. This initial purification is carried out in a zone at a

somewhat higher pressure than the rest of the furnace (_-10 -2 torr) so that

gross-impurity removal can be accomplished more efficiently. The mate-

rial then flows under a slag barrier which prevents solid contaminants on

the surface from flowing into the next stage of purification. In this section,

the material is subjected to a higher vacuum, and thermal stirring pro-

duces an homogenizing effect on the melt. The hearth, constructed of

water-cooled copper, thus reduces the possibility of reactions between the

molten metal and the hearth material. The high rate of heat extraction by

the water-cooled copper hearth decreases the economy of the process

slightly by requiring excess electron-beam powers to compensate for the

cooling action of the hearth. According to experience to date in a large

pilot-plant furnace, the resulting thermal inefficiency has not been found

to be a serious economic problem. Insulating liners may be used in the

hearth to provide higher thermal efficiency for the processing of relatively

nonreactive materials.

The area of the hearth is large enough to allow exposure of molten

metal to the vacuum environment at a rate of about 300-500 Ib/hr/ft 2 of

hearth. The electron-beam heating requirement is in the range of Z0 to

50 kw/ft 2 of hearth depending upon the scale of the operation. For the larg-

est projected scale of operation (1 million tons of steel per year) the EB

power requirements would be on the order of 80 kwh per ton of steel. The

controlled flow of molten material through the hearth permits continuous

casting of slabs or ingots.

A recent improvement in this process has been the addition of an

induction-heated crucible and ladle transfer system to the input stage of the

cold hearth furnace(55). This system provides a means for preliminary de-

gassing of the molten-feed stock and performing some of the refining opera-

tions that would otherwise not take place on the hearth. It also provides a

molten feed to the hearth which results in economy in capital and operating

expense and also improves the stability of the hearth itself. A pilot-plant

furnace of this type is now in operation at Airco-Temescal, and the design

of a full-scale furnace rated at 20,000 to 30,000 tons per year capacity has

been proposed.

Plasma electron beam melting: Plasma electron beam melting is

discussed here as a subject separate from high-vacuum EB melting be-

cause of the fundamental differences between these techniques. The main

distinguishing feature of plasma EB melting is that the process is con-

ducted in a relatively high-pressure (10-1 to 10 -4 torr) inert-gas
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atmosphere in contrast to the high vacuum (10 -4- 10 -6 torr) required for

conventional EB-melting techniques.

Two distinct types of plasma electron-beam (also referred to as

hollow cathode) units are discussed in the literature. One reported by

van Paassen, Muly, and Allen (56) and later by Cocca and Stauffer (57) op-

erates at 10-to 20-kv potential and 10 ma to Z amps of electron-beam cur-

rent in an inert-gas atmosphere at pressures between I and 100 microns

(10-1 to 10 -3 torr). The cathode in this unit is a cylindrical or spherical

hollow wire-mesh container. The cathode for this process remains cold,

and the electron beam is extracted primarily by secondary emission from

the ion-bombarded cathode. The second type of hollow-cathode gun was

first reported upon by Lindsky, et ai.(58), and later by Morley(59). Dur-

ing operation a hot, solid-wall, tubular cathode contains a low-pressure

gas plasma from which an electron beam from I00 to 1,000 arnps can be

extracted at a potential of from 30 to 50 volts. For best efficiency of op-

eration, this unit operates from 10 -4 to l0 -2 torr, but excursions in the

10-tort range may be tolerated with some loss of overall beam efficiency.

In this process the electron beam primarily consists of thermionically

emitted electrons from the cathode (heated by ion bombardment) together

with excess electrons contained in the plasma. These two types of hollow-

cathode electron guns are distinguished by referring to them as cold and

hot hollow-cathode guns, respectively.

The hot and cold hollow-cathode melting schemes are similar in two

respects. In both processes electron beams are generated by the bom-

bardment of a cathode with high-energy, positive ions from a plasma.

Also, in both schemes pressures greater than those necessary for efficient

vacuum electron-beam melting are possible. This represents both an ad-

vantage and a disadvantage for plasma electron beam melting. The higher

pressure conditions restrict the amount of purification by vaporization of

volatile species to some extent; however, the purification by vaporization

afforded by this technique is greater than that present in either vacuum arc

or induction melting. The advantage of working in higher pressures than

with standard vacuum EB melting is that the ease of melting alloys is in-

creased because of the decreased tendency for vaporization loss of alloying

elements. Thus with plasma EB melting it may be possible to strike a

favorable compromise between the purifying action provided by EB melting

and the control of composition provided by arc melting.

The primary differences in the two plasma electron-beam melting

techniques discussed is in the nature of the electron beam produced. The

hot hollow cathode produces a substantial fraction of the electron beam by

thermionic emission from the hot cathode. The remainder of the electron

beam consists of electrons from the ionized gas. The cold hollow-cathode

process, on the other hand, relies primarily on secondary emission of

electrons from the ion-bombarded cathode. Under certain power require-

ments, however, the cold hollow-cathode process may also produce a sub-

stantial fraction of thermionically emitted electrons. Power requirements
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for the two processes represent decreased voltages from those typically re-

quired for vacuum electron-beam melting, but the power source for each

unit is considerably different. The hot hollow cathode requires a low-

voltage, high-current supply.

Hollow-cathode electron-beam melting has not yet become a com-

mercial process, and the majority of work conducted has been on a small

laboratory scale basis. However, the ability of this process to provide a

purifying action in a relatively high-pressure, atmosphere furnace would

appear to make it a candidate for the electron beam melting of alloys and

in particular superalloy materials.

Application of electron beam melting to superalloys. - Little if any

published information is to be found on electron beam melting of superalloy

materials. The primary reasons for this apparent lack of attention are the

difficulty of melting alloys in a high-vacuum environment because of differ-

ential vaporization problems and the high cost of small-scale electron

beam melting.

In recent studies at Airco-Temescal a number of tons of superalloys

such as Inco 718 and Ren4 41 have been prepared in a 1200-kw cold-hearth

electron-beam furnace. Preliminary results appear favorable according to

Dr. H. R. Smith, Jr. The materials melted have held composition much

better than previously expected, presumably because the molten alloys are

not ideal solutions and vaporization rates are significantly less than the

calculated values. Property evaluation of these electron beam melted

superalloys are not complete at present; however, preliminary results

suggest that the properties of these materials compare favorably with those

of conventionally melted materials.
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CHAPTER 6. VACUUM CASTING OF SUPER.ALLOY SHAPES

The Process

Vacuum casting of superalloy shapes is a development of the centuries-

old lost-wax process. In recent times, pattern materials and mold mate-

rials have been improved to the point that the technology permits intricate

parts to be made with high dimensional accuracy• The methods of making

the mold have been exclusively the investing (i e , coating) of a wax (or las-• o . P

tic) pattern with a refractory to obtain a strong mold(60). Currently, some

research work is being done using conventional Z-piece molds for large su-
peralloy castings(61), but except for this, both large and small superalloy

parts have been made by investment casting. The basic steps in the process
are as follows:

(1) Make a wax or plastic pattern of the piece and add to it the

gates, runners, and other parts of the molten-metal

distribution system.

(2) Dip in a thin slurry of mold refractory, cover with "stucco"
grain, dry. This is the shell mold.

(3) Heat the mold/pattern assembly to melt out the pattern, fire

the refractory, and preheat the mold.

(4) Prepare the vacuum furnace and start the melt if the furnace

has a separate vacuum chamber for the mold. This is done

while the mold is being heated.

(5) Place the preheated mold in the vacuum furnace and transfer
the molten metal to it.

(6) Remove the mold material, cut off the gates, runners,

risers, etc. , clean, and inspect the casting. This is

done after the casting has cooled.

Advantages of investment casting, as applied to superalloys, in com-
parison with forged or welded assemblies, are(6Z):

(1) Dimensional tolerances can be controlled relatively closely.

(Z) Intricate designs can be made; in particular, internal passages
in which air-cooled turbine blades can be cast.

(3) The stronger high-temperature alloys are not amenable to

hot forging, and casting is now the only practical way to

achieve the required shapes in these alloys.

(4) Fine surface finishes can be obtained, sometimes eliminating

the need for polishing.

(5) Special microstructures such as unidirectional grains or

single crystals can be obtained. (63)
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In addition to these advantages, the use of vacuum in investment cast-

ing aids in filling the mold quickly and completely. Quickly transferred to the

vacuum chamber, the preheated mold remains free of reactions with the at-

mosphere, while awaiting the molten charge. Details of various aspects of

vacuum-investment casting are discussed in the sections that follow. Ex-

amples of cast turbine-engine components are shown in figures 25 and 26.

Making the Disposable Pattern

The disposable pattern in a high-production item is made by injecting

wax or plastic into a steel or aluminum splite die machined to conform to the

part shape, with allowances for wax shrinkage, metal shrinkage, and mold

expansion. An overall figure of 0. 5-percent wax shrinkage is accepted for

most waxes. However, nonuniform shrinkage can cause dishing of flat sur-

faces where movement is restricted. (64) Most dies are machined from steel

or aluminum to tolerances of 0.001 inch, and it is advised that a great deal

of care be taken in preparing the die; nothing is saved if the die quality is

sacrificed for economy. (65)

The lower half of the split die may contain a core if a hollow casting is

to be made. Dies that incorporate ceramic cores must provide means of

properly locating the cores so that they will not break as a result of stresses

imposed on them. Provisions are made in the die for leaving the core ends

exposed so that the core can be held in the investment mold. The part of the

core protruding from the wax pattern is called the "core print". (66,67)

The patterns for practically all turbine-balde shapes, even with intri-

cate air passages can be made in a two-piece die. Other shapes require a

more involved process. For example, patterns for turbine nozzles for

small gas-turbine engines (figure 27) cannot be made in a single die from a

one-piece wax injection. Similarly, the pattern for integrally bladed cast

turbine wheels with twisted blading might not be removable as a one-piece

injection. Two approaches to this problem are (1) to use soluble wax pat-

terns as preplaced inserts between the blades or between the vanes, and

later dissolving out the inserts, and (2) to make a compound built-up pat-

tern of wax and plastic.

In the first approach, the preplaced inserts become part of the die,

but after the wax injection they become part of the pattern. (68) They can be

dissolved out by a weak hydrochloric or acetic acid solution. (64) Soluble wax

is not always the best method if high dimensional accuracy is needed. It is

especially hard to hold tolerances on massive parts when soluble-wax inserts

are used(68), although they usually contain an inert :filler. (64) A thin coating

of wax over a plastic base would be an alternative way of obtainin_ a struc-

tura].ly stable, but easily removable, pattern for large castings. (,_9) More-

ever, the wax/plastic assembly-casting method is said to be less costly and

to offer greater design latitude than the soluble-wax technique. (70)



8 3  

FIGURE 25.  EXAMPLES O F  PRECISION CAST NONROTATING 
COMPONENTS IN GAS-TURBINE ENGINES 

(Cour t e sy  Aus tena l  Mic rocas t  Division, Howmet Corporat ion)  



FIGURE 26.  EXAMPLE O F  PRECISION CAST ROTATING 
COMPONENTS FOR GAS-TURBINE ENGINES 

(Courtesy Austenal  Mic rocas t  Division, Howmet Corpora t ion)  
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In the plastic/wax pattern method of forming such shapes as turbine

nozzles, the individual plastic blades or vanes are cemented together in a fix-

ture to form a ring. Previously cast wax patterns for the shrouds (on a

nozzle) or the disk (on a turbine wheel) are joined to the plastic ring to form

the final pattern. Figure 28 shows a plastic/wax pattern for a turbine wheel

with integral blades. After inspection of this assembly, the wax gating sys-

tem and pouring crucible are attached. (68)

In integral turbine wheel blades the choice of a one-piece, soluble-wax,

or plastic/wax pattern depends on the size and shape of the airfoils, the ac-

curacy required, and the total production expected (which influence the

amount of money that can be spent on die construction). Ahigh-quality one-

piece wax-injection die costs about three times as much as the plastic/wax

tooling, so that the latter is preferred during the development work where

tooling cost, lead time, and tooling flexibility are important factors. In

volume production, a one-piece wax die should be used if the design

permits. (68)

Sometimes the designer can work with the foundry to change the design

slightly in order to simplify the pattern-making process. For example, if

the curvatures of the blade do not permit retraction of the plastic inserts,

then soluble-wax cores or collapsible inserts are required. (68)

When the die is clamped and the cores and inserts are in place, hot

wax is injected into the die to produce the patterns. Various presses are

available commercially for accomplishing this operation. Typically, the

molten wax is at 135 to 160 F and the injection pressures may be from 200 to

400 psi for turbine-blade patterns. The wax compositions are considered

proprietary; one formulation used in early 1960's was 60-percent paraffin,

25-percent flexoresin, and 15-percent carnuba wax. (71) Present technology

is based on synthetic waxes that have wider possibilities for adjusting the

flow and solidification, the wax may contain 25-to 40-percent fillers con-

sisting of such materials as polystyrene, or wood flour.

In making the wax pattern, several variables must be controlled. These

include mold temperature, wax_injection temperature, dwell time, clamping

pressure, injection pressure, and sometimes room temperature. These

variables are all important in minimizing pattern shrinkage and obtaining

complete filling of the die.

Specific values of each of the variables are fixed for each pattern, but

the value depends on the size and complexity of the part and on the wax being

used. The mold temperature, which is usually about i00 F, may affect the

filling and can be increased if good detail is not obtained. It must be kept con-
stant if the defect known as "flow lines" is to be prevented. (62) Generally,

it is desirable to minimize the wax-injection temperature in order to reduce

the amount of shrinkage after the pattern is removed from the die. Room

temperature, especially in the summertime or in warm climates, should be

controlled for maximum dimensional stability of the wax pattern.
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Clamping pressure and injection pressure are related. High injection

pressure is, as a rule, desirable, but if excessive flash occurs at the die-

parting line, it may be necessary to increase the clamping pressure. (Good

die fit-up is, of course_ a first requirement for minimizing flash.)

Slow setting, fluid waxes require colder molds than fast setting waxes.

With fast setting waxes it is preferable to heat the mold rather than overheat

the wax, for even a 5-degree overheating from predetermined limits can cause

excessive shrinkage and "dishing" of flat surfaces. Because hot wax gives a

better surface_ there is a tendency in the direction of overheating. A better

method is to use cooler wax with higher pressure.(64)

Plastics are sometimes used as patterns for long-run small parts of

simple geometry because they are less costly than wax and can withstand

more abuse during handling. For cored parts, however, only waxes are used

because the plastics, being highly viscous, require higher injection pressures

and are difficult to remove. (67) Plastic materials require molding pressures

of I0,000 to 30,000 psi, temperatures of 325 to 600 F, and clamping pres-

sures up to 500 tons. (72)

Dimensional accuracy of the casting is very dependent on the accuracy

of producing and assembling the patterns. Contraction and distortion of the

wax pattern, when it has been removed from the die, may continue for 28 to

48 hours because of stress in the material and varying cross sections. This

can be combated by coring out or inserting a chill in heavy sections; mini-

mizing the temperature of the wax, perhaps injecting it as a semisolid in-

stead of a liquid; and placing the hot pattern in a plastic receiving fixture

(facsimile) when it is taken from the die. (73) Some data on the benefits de-

rived from this practice are shown in table II.

The finished separate patterns are assembled in a cluster and fused to

the gates, runners, etc., with a hot knife or similar tool as illustrated in

figure 29. Cement and solvents are used for joining plastic patterns to the

gates and runners.(67) It is sometimes recommended that the sprue wax

have a melting temperature below that of the pattern wax (64) so that the wax

can be melted out without stressing the mold, but this is not always done.

Usually, however, little or no filler is used in the wax for the gates, runners,

and sprues. Stress due to expansion during wax removal can be avoided by

using a thin wax shell for the pouring basis with an aluminum plug to fill the

large volume. Threads in the plug are a convenient way of attaching a handle

for dipping and drying. Figure 30 illustrates the way a plug might be used.

The finished pattern may be cleaned in alcohol, but the pattern must be

thoroughly dried afterwards.
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F I G U R E  29.  ATTACHING T H E  WAX P A T T E R N S  F O R  T H E  POURING 
BASIN AND S P R U E S  TO T H E  CASTING P A T T E R N  B Y  
MEANS O F  AN E L E C T R I C A L L Y  H E A T E D  TOOL 

( C o u r t e s y  TRW Meta l s  Division) 
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FIGURE 30. WAX PATTERN WITH ALUMINUM PLUG IN POURING BASIN



TABLE 1 I.

91

DISTORTION OF WAX PATTERNS COOLED FREELY

AND COOLED IN A PLASTIC FACSIMILE(73)

Part Kind of Distortion

Amount of Distortion

Cooled Freely Cooled in Plaster

Stator segment

Turbine blade

Axial, on a 5-in. 0.020-0.030 0.005-0.010

length, in.

Blade bowing on a 0. 010-0. 020 Nil to 0. 005

5-in. length, in.

Twist on a 5-in. 3-4 Nil to 1

length, degrees

Molds and Cores

The next step in the process is to invest the wax pattern with the mold-

ing material by successive dips in ceramic slurries to make a one-piece

shell mold. For hollow parts, a hollow-core wax pattern is dipped, the

same as for a solid pattern. However, if the core of a hollow airfoil section

is too small for the investment to fill successfully, it is necessary to use a

preformed removable core as part of the pattern around which the rest of _the

mold is formed. {65) This is illustrated in figure 31. (74) Today, all air-

cooled turbine blades (such as illustrated in figure 32) are made with pre-

formed cores, examples of which are shown in figures 33 through 35.

Figure 36 shows the assembly of a wax pattern containing a preplaced

core. (67) Structural hollow parts - struts, for example - might be made by

dipping the pattern.

Core materials and techniques. - Silica cores are used for many com-

plex configurations, the most prevalent today being for air-cooled turbine

blades. For holes 0.020 to 0. 120 inch in diameter, which are used for

straight-through cooling of turbine rotor blades, stabilized quartz tubing as

well as ceramic tubes have been used as the core material. (65, 75)

Figure 37 shows quartz tubes protruding from the wax pattern of an air-

cooled turbine airfoil. Figure 38 is the mold (made from this pattern) cut

apart to show the core placement. (67) Today, silica (or enough silica to

make the core leachable in caustic) seems to be used exclusively, because of

the ability to remove it without affecting the casting's properties. For mas-

sive and complicated cores, complex silicate compositions(62, 65) and other

proprietary ceramic compositions have been used successfully. (66) In

general, the latter are magnesium-aluminum silicates, called cordierites.

Cores are usually made to tolerances of+0.005 inch, although closer

tolerances are possible in some instances. (74) Ceramic tubes have been

ground with a very high level of dimensional accuracy. The designer should
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FIGURE 31. EXAMPLE OF THE USE OF A PREFORMED CORE TO PRODUCE
ACCURATE HOLLOW OR SEMIHOLLOW CASTINGS (74)
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F I G U R E  32.  E X A M P L E S  O F  AIR-COOLED TURBINE BLADES 

( C o u r t e s y  A u s t e n a l  M i c r o c a s t  Division, Howmet  C o r p o r a t i o n )  
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FIGURE 3 3 .  EXAMPLES O F  PREFORMED CERAMIC CORES 
FOR AIR-COOLED TURBINE BLADES 

(Cour tesy  Superal loy Group,  Howmet Corpora t ion)  
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FIGURE 34. PREFORMED CERAMIC CORES FOR VARIOUS APPLICATIONS 

(Courtesy Sherwood Refractories,  Inc. ) 
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FIGURE 35. PREFORMED CERAMIC CORES FOR 
AIR-COOLED TURBINE BLADES 

(Courtesy Sherwood Refractories,  Inc. ) 
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keep in mind that high core precision is costly and should not be "over speci-

fied". The silica compositions used today seem to have adequate mechanical

strength, crushability, resistance to thermal shock, dimensional stability,

inertness to molten alloys, and refractoriness (ability to retain their shape

at high temperatures) and are relatively easy to remove from the casting.

To help maintain dimensional stability during firing, the cores might be

fired in ceramic setter blocks which conform to the core shape. Also, they

may be simply backed by loose grog during the firing.

Preformed cores must be rugged enough to withstand handling in foun-

dry operations, but their strength must also be maintained through the pre-

heating range. Distortion during this period cannot be tolerated. Because of

the necessity of maintaining dimensional tolerances on thin sections, the

shrinkage of the core must be compatible with mold shrinkage during all the

mold-preparation steps; otherwise, distortion or breakage of the core will

result. Removal of the cores, by whatever method, must be accomplished

without damaging the casting.

Preformed ceramic cores have been made by all the usual ceramic

forming methods. These include extrusion, dry and wet pressing, casting,

isostatic pressing, injection molding, and various combinations of these pro-

cesses. Extrusion is used for round, or other regular cross sections_ usu-

ally as cores for straight-through passages in turbine airfoils. However,

the extrusion_ can be bent or formed if necessary.

Ceramic casting processes are also used when a few castings are to

be produced for prototype work as well as for certain production items.

The ceramics are bonded by air-setting, thermal-setting, chemical, or hy-

draulic reactions. Molds for casting the ceramics include plaster, metal,

wax, and plastic; filling of the mold is aided by air pressure and vibration.

For high-volume production, ceramic injection molding or transfer molding

is more economical, even though the first cost of tooling is higher. Com-

plex labryinth cores for hollow blades can be made in standard plastic-

injecting molding equipment or by transfer molding; in these cases the

ceramic material is mixed with a thermosetting resin binder. Transfer

molding is preferred over injection molding because, in the former, a

stronger core is obtained in both the green state as well as in the finished

core. Preweighed pellets are placed in the die and molded as shown in

figure 39.

Proprietary core materials may contain alumina, magnesia, zirconia,

and silica, alone or in combination. (75) It has been reported that alumina-

base cores for a hollow turbine blade are not satisfactory. (66) Alumina com-

binations formed by casting, compression, or injection molding were too

weak during the sintering stage, and the manufacture of thin cores, or air-

foil cores with thin leading or trailing edges was not considered to be practi-

cal. Moreover, removal of these cores (even by sandblasting) was difficult

and uneconomical.
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FIGURE 39. TRANSFER MOLDING OF PREFORMED CERAMIC CORES
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Injection molding of Alsimag 145 ( a glass-bonded silica-base ceramic

manufactured by American Lava Corporation) was satisfactory for a hollow

airfoil but it required curing in a mold to control warpage.(66) For uniform

sections, extrusion could be used, and, if the extrusion was mold-cured, a

twist could be put in. Dimensional control is difficult, however, and shrink-

age is a problem. By injection molding the core with its curing (setter)

block, and allowing for shrinkage in both parts, strong tapered or twisted

cores could be made economically. (66) About 10-percent shrinkage was

experienced in drying and firing.

Core-removal methods, in general, may involve either mechanical

(sandblasting) or chemical (alkali-leaching) techniques. Alkali leaching may

be accomplished by immersion in molten alkali or by pressurized (to I000

psi) systems. (62, 65, 66) The alkali-leaching method is applicable to silica

(quartz) and leachable ceramics which may be glass-bonded silicates or

glass-bonded zircon. Large cores might be leached in molten-salt baths.

The cost of producing a hollow casting is directly related to the cost of

the core. If, in a hollow turbine-blade casting, "posts" are to be incorpo-

rated across the cavity, the core will be less costly if the posts are parallel

as illustrated in figure 40. The simple shapes shown as figures 40c and 40d

are economically made by extrusion.

Mold makin__. - The mold must be made from a stable composition that

has little or no tendency to outgas after it is placed in the vacuum furnace.

Conventional sand, or organic-bonded shell molds cannot be used for vacuum

casting because of their inherently high volatile material content. The pres-

ent state of the art is to use the ceramic shell-molding process for making

the mold, which might then be backed up with a refractory grog to prevent

the preheated mold from losing heat while waiting for the pour. (76) The

present practice favors unsupported shells.

Until 1958, a great number of airfoil shapes had been made with a

monolithic mold, that is, a solid, more-or-less conventional mold of silica,

or aluminum silicates bonded with ethyl silicate or colloidal silica. These

molds were too heavy, and were not capable of producing castings with closely

held dimensional tolerances. In addition, they were quite subject to

cracking. (65)

For the past I0 years the shell-molding technique has become univer-

sally accepted for making both airfoil shapes and large castings. The method

is based on the successive building up of layers of the refractory on the wax

pattern, melting out the pattern, and firing the mold. Figure 41 shows a pat-

tern, mold, and finished casting for an integral turbine wheel.

Many types of mold materials have been used. The principal require-

ments are that the mold have sufficient refractoriness and mechanical strength

to resist both the room-temperature handling and the high temperatures en-

countered in firing, preheating, and casting; furthermore, it must not react

chemically with the molten superalloys that are cast into it.
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A recent Air Force-sponsored program to develop methods for making
large superalloy castings, made use of conventional cope-and-drag ceramic
molds and also sand-facedmolds. (61) Details are presented in the appro-
priate sections that follow.

The facecoat: The first dip coat (sometimes called the facecoat or pre-
coat) determines the surface finish of the casting, and it obviously must be
high quality and free of any tendency to spall during any of the drying or heat-
ing operations. An additive for grain-size control may be incorporated in the
first coat; this additive (sometimes called an inoculant) is for nucleating
grains in the molten metal next to the mold wall, thus reducing the grain
size.

In the dip-coating technique, many controls must be exercised on both

the materials used and on the process variables. Such factors as chemical

composition, particle size, and methods of blending refractory materials are

carefully prescribed. The slurry viscosity, temperature, and pH must be
controlled to insure complete covering and correct thickness of the facecoat.

The primary-coating slurry may be alumina or zircon (zirconium sili-

cate) bonded with a solution of ethyl silicate, sodium silicate, or silica sol
(colloidal silica). (77, 78, 79) The most widely used mold materials today are

zircon, alumina, zircon plus alumina, and fused silica with zircon; binders

are usually silica sol or ethyl silicate. These mixes are adequately inert to

superalloys. (80) When production schedules are such that flexibility of solid-

ification rates is needed, ethyl silicate is attractive as a binder because, by
proper control of hydrolysis and pH, the sols can be controlled to harden in

2 minutes to several hours. (67) The facecoat grain size is usually -325
mesh, (67, 75) while the outer coats may be 200 mesh. (67) Care must be

taken that no ethyl silicate remains between the wax pattern and the precoat;

the residual can cause violent "blows" or degassing when the hot metal hits
the mold. (77)

For making large castings in a two-piece mold, it was found that fine

zircon sand (168 mesh) bonded with sodium silicate (3-percent binder by

weight) could be used as a facing on the cope-and-drag. It was backed by

Calamo Z0 sand (trademark of Harbison-Walker) bonded with pure sodium sili-

cate. Better surface finishes were obtained when the zircon was mixed with

100-mesh calcined kyanite. The facing may be from 1/2 to 2 or 3 inches

thick, depending on the location, shape, and other factors. Weight and cost
are important in limiting the facecoat thickness. (61)

Cobalt oxide is a common facecoat additive for controlling the grain

size of the casting by acting as a grain-nucleation agent, although its effec-
tiveness varies with the amount of superheat in the molten metal. (61,65, 81)

(The subject of grain size and morphology is discussed further under "Melt-

ing and Casting"). Other'grain-nucleating agents have been suggested as

mold additives. For example, there are patents suggesting cobalt alulni-

nate or cobalt silicate for this purpose. (82, 83) Typically, 20 to 50 grams of
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cobalt aluminate or silicate would be added per liter of slurry, although up

to 200 grams per liter is also said to be effective. It is theorized that the

cobalt aluminate or cobalt silicate is effective because the cobalt is fully re-

acted with the melt during the nucleation process, whereas cobalt oxides are
believed to be incompletely reacted. (8Z)

Another patent suggests the use of 1 to 5 percentby volume of a reduc-

ible compound (such as oxides) of iron, nickel, cobalt, or manganese. (84)

Such compounds are reduced by injection of a reducing atmosphere (e. g. ,

trichlorethylene) at the time of pouring to provide finely divided molten metal

to act as nucleation agents.

In the development of methods of making large superalloy castings, co-

balt oxide (with alcohol and ethyl silicate as the vehicle) was brushed on the

finished mold cavity surface as a slurry. (61) Mixed cobaltous and colbatic

oxides, which represent the less expensive grades, are available under the

trade names "Gray Co Oxide", "Black Co Oxide", and "Metallurgical Grade

Co Oxide". They were reported to be as effective as technical-grade cobalt

oxide for grain refining in large castings. (61) Figure 42 shows that with

100 degrees F superheat, the mode of solidification was strongly columnar

with or without a cobalt oxide mold coating. However, in plates solidified

in the coated mold the width of the columnar grains is less than those from

an uncoated mold.

For the usual shell molds bonded with colloidal silica, the highest

purity grain-refining additives are recommended because impurities can

adversely affect the stability of the slurry by neutralizing the charge on the

silica particles in suspension. (85)

Efforts to incorporate a slurry of cobalt oxide inan alcohol/ethyl sili-

cate vehicle for painting on the surface of amold for large castings some-

times resulted in surface defects where the layer was too thick. Mixing of

the cobalt oxide with the ceramic grain (Z to 5 percent by weight of ceramic

grain) as is done in shell molding, resulted in severe spalling when the al-

cohol was being burned off the gelled mold. To avoid this, compounds of

cobalt that would convert to the oxide during firing were tried as an alterna-

tive. Cobaltous carbonate, cobaltous acetate, and cobaltous nitrate were

tried, but, for various reasons the results were negative. (61)

Both cobalt oxide and iron oxide have been mentioned as grain-refining

additives for cobalt-base alloys. However, such inoculants are rarely used

for cobalt-base superalloys because grain size is more dependent on casting

variables than on grain-nucleating agents. (86)

Dipping: The slurry must be properly mixed so that no air bubbles are

entrained in it and so that the ceramic is uniformly dispersed throughout.

Blade-type mixers are used for this purpose. Blade size and speed are

carefully chosen to prevent turbulence, settling, and overheating. Overheat-

ing is to be avoided because the carrier will evaporate too quickly and
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W I T H  C O B A L T  O X I D E  
MOLD C O A T I N G  

NO MOLD C O A T I N G  

FIGURE 42. MACROETCHED SPECIMENS FROM CAST P I A T E  O F  
VARIOUS THICKNESSES O F  ALLOY 713 LC,  POURED 
AT 100 DEG F S U P E R K E A T ( ~ ~ )  

(Cour tesy  U. S. A i r  F o r c e  Mate r i a l s  Labora to ry ,  
Manufacturing Technology Division) 
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becausethe slurry viscosity will be changed. High slurry viscosity is de-
sired on the first coat so that it will adhere to the smooth pattern. (67)

Air bubbles must be avoided in dipping the pattern into the slurry. One
description of the method is that the "pattern must be immersed and not
plunged"(67), but fast immersion and slow withdrawal by pneumatic units has
also beenreported. (71) Howmet reports that the first three coats are always
handdipped, except for very heavy castings. Immersion time is critical.
The outer layers of a previously coated pattern mus.t be dampenedby the
seconddip in the slurry but not soaked, which might compromise the inte-
grity of underlying coats. Whenthe wet assembly is removed from the bath
it is allowed to drain free of excess slurry; special care is taken to avoid
excessive build-up anywhere on the surface or at joints. (67) Figure 43 illus-
trates hand dipping of a cluster of four turbine stator vanes. Automatic dip-

ping is preferred in some plants because better consistency is obtained.

Stuccoing and drying: While wet, the coating on the wax pattern is stuc-

coed (dusted) with a coarse refractory such as 50 or 60-mesh alumina. The

inner coats may be as fine as 140 mesh, or in some cases 50 to I00 mesh is

preferred for the first three coats. Back-up layers can be quite coarse,

12 to 30 mesh being common. The primary purpose of the stuccoing is to pro-

vide a base for successive dips. (67) The stuccoing can be done by placing

the wet mold in a shower of coarse particles from an overhead vibrating

grate or by immersing it in a fluidized bed of coarse sand. (67, 80)

At one time, the mold was made of only two to four layers, backed up

by loose MgO refractory in a can. The method is used by TRW Metals Divi-

sion but 4 to 9 dips are typical. Better heat retention is possible than if no

back-up were used. For the free-standing mold in wide use, 8 to 12 dips

with drying between each dip, are not uncommon for building up the mold

wall. Much depends on the kind of binder used; for example, with the ethyl

silicate system used by Austenal Microcast Division of Howmet Corporation,

I0 to 15 dips are used because their shell mold is weaker. This binder, a

so-called "Hydrolyzed binder", consists of alcohol, ethyl silicate, water, and

an acid. It has the advantage of rapid drying as the alcohol is driven off, and

can be set chemically with ammonia in 5 to 6 minutes. Consequently, an auto-

matic carousel-type dipping machine can be used (see figure 44), with stations

of the cycle in the dip tank, the warming ovens, and back around again for ad-

ditional dips. After the first dip, which requires 12 hours to complete, the

entire process is completed in 1 or 2 additional hours.

The time to complete the mold, reported variously as 1/2 day, 1 day

(most common), and up to 3 days(65) depends on the kind of mold binder

being used. The drying time for colloidal silica suspensions is 2 to 5hours,

whereas for the silicate sols in ammonia, it may be only a matter of minutes.

The shell is dried in controlled-humidity ovens or cabinets (about 40-per-

cent RH); vacuum drying is the last step if the shell is made with a water-base

binder. Controlled humidity at about 50-percent RH is used for the facecoat at
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Austenal, and 25-to 40-percent RH for the back-up coats. For water-base
binders the ideal drying condition is to havethe wet-bulb temperature equal
to the ambient temperature of the dipping room. This eliminates problems
that may arise from unequal expansionof the wax pattern andthe shell. Each
succeedinglayer may be of a different composition and grain size, but when

the process is complete the shell thickness is from 1/4 to 1/2 inch for the

airfoil-type castings. Figure 45 shows a completed mold for a prototype of
a large aircraft structure part. (87)

Dewaxing: When the mold has been dried, it is ready for melting out

(dewaxing) of the wax pattern. Various methods have been used for accom-
plishing pattern removal. (62, 71, 73, 78, 88) Examples include steam auto-

claves, solvents, "shock heating" (flash dewax), conduction through the mold

refractory, hot sand, and burning. Concerning these alternatives, solvent

removal was at one time considered because of its ability to remove the wax

without stressing the mold, which can occur if the wax is heated and does not

flow out immediately. It is an expensive method, however. The dangers of

stressing the mold by wax expansion are avoided by shock heating, which is

accomplished by lowering the mold into a furnace at about 1800 to 1850 F;

this quickly melts the wax next to the mold, which allows for expansion.(60,73)

The conducted-heat method uses high-frequency induction to heat the mold,

and can operate at lower temperatures than the shock-heating method, but it

has sufficient other drawbacks to limit its practicality. In the hot-sand

method, the mold is placed in a box, and fine, hot sand is dumped into the

box to bury the mold. Complete wax pattern removal is accomplished in 10 to

Z0 seconds. (71) The steam-autoclave method has the advantage of not sub-

jecting the wax and shell to such severe thermal gradients as the shock-

heating method because the steam permeates the refractory mold material

and heats the wax more quickly than in the shock-heating method.

In dewaxing by burning out the wax, the mold and pattern are inverted

over a gas burner, which ignites the wa_. After about 15 to 20 minutes the

wax has been burned out, and the mold is further burned out for 6 to 10 hours,

with the latter step also serving as a preheat prior to casting.

Plastics, because they have higher melting points than waxes, are more

difficult to remove. Also, since they are heated over a wider temperature

range before melting, they expand more than waxes (5-10 percent for waxes

versus 19 percent or more for plastics)( 67}. The danger of cracking the mold

during "dewaxing" of plastics is therefore greater than for waxes.

Ordinarily, the shock heating, wax liquation occurs in 10 to Z0 seconds

at the mold/wax interface, and complete removal is accomplished in 3 to 4
minutes (67), although 2 to 3 hours is usual for assuring that no carbon resi-

due remains. If the wax is to be saved, the mold may be moved to a cooler

furnace after liquation, so that the wax will not be burned. However, an

oxidizing atmosuhere is important so that all traces of the wax are removed
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and there is no carbon residue.(67) Figure 46 shows several molds being re-

moved from the furnace after dewaxing. A completed mold is shown in

figure 47.

After flash dewaxing or steam-autoclave dewaxing, the mold may be in-

spected, cleaned with a vacuum cleaner, and capped off with aluminum foil

or other protective covering while awaiting the preheating furnace.

Firing and preheating the mold: When the investment mold has been de-

waxed, it is fired, an operation that also serves as the preheating step prior

to filling it with molten alloy. Almost all casting waxes have an ash content

below 0.05 percent, which consists almost entirely of the oxides of calcium

or magnesium. It does not affect the casting. (64} If the mold is not backed

up with loose refractory, supplementary localized insulation might be used

in order to overcome hot tearing, grain size, or porosity problems. The

mold preheat temperature affects the ability of the metal to fill the fine de-

tails, but it can also affect the grain structure and soundness of the casting.

Thus, the specific preheating temperature must be chosen according to the

requirements of each casting. (78) A typical firing (preheating) temperature

for nickel-base superalloys would be between 1800 and 1900 F for 2 hours(71);

1900 F is a typical temperature for cobalt-base superalloys. (86)

For rammed sand molds bonded with sodium silicate (zircon sand facing

Calamo 20 backing}, it was found that baking above 800 F is required (perhaps
1000 F is a practical levell. (611

Melting and Casting

Typical production cycle (62,65,66,76,78,80,89) - Historically, the

various vacuum-melting and casting schemes that have been used include

indirect-arc and induction type melting furnaces, and for casting, the Durville

and other roll-over methods wherein the upside-down mold is attached to the

melting furnace. Today, however, the two-chamber, semicontinuous system

is becoming the standard in the industry.

The two-chamber system shown schematically in figure 48 consists of

a melting chamber (with a charging lock) and a mold chamber; the two cham-

bers are separated by a pneumatically operated flapper door. This arrange-

ment permits the melting chamber to remain under vacuum continuously.

The mold chamber can be either underneath the melting chamber (as in

figure 48) or alongside it (as shown in figure 49).

The procedure for a typical cycle is as follows:

(1) With the vacuum already established, place the prealloyed

ingot in the charging crucible through the charging lock

and turn on the power.
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FIGURE 48. SCHEMATIC OF TWO-CHAMBER VACUUM-CASTING SYSTEM



117 

h 

F: 
0 
.,-I 
4 
cd 
k 
0 a 
k 
0 
V 
4 

E" 
s 3 

" 
c 
0 
m 
> 
fi  

.,-I 

.,-I 

.r( 

4 
m 
rd 
V 
0 
k 
U 

2 
z 
3 

I+ 

e, 
4 
m 

h 
v) 
e, 
c1 
k 
3 
0 u 
Y 



118

(2) While maintaining a high vacuum (0. i to I micron)* in

the melt chamber, place the preheated mold on the

mold-chamber platform, close the door, and pump

the mold chamber down to perhaps 50 to 100 microns.

(3) When the melt is ready, open the flapper door between

the chambers and move the mold platform into the

pouring position in the melt chamber. The pressure

will increase, but should be quickly lowered to under

i micron by the high-vacuum pump.

(4) Pour the heat quickly, move the mold to the mold

chamber, close the flapper valve, and start recharging

the crucible.

(5) Open the mold chamber, remove the mold, and get

ready for the next cycle.

If a single-chamber furnace is used, the cycle time is much longer.

this case the mold must be the backed-up type in a can so that the preheat

temperature can be maintained while the chamber is being pumped down in

readiness for melting and pouring.

In

Furnaces and auxiliary equipment. - The most common vacuum-casting

furnaces are single-mold units. They cast one mold at a time from a melt

that usually weighs 20 pounds or less(65,76,89) although melts of 25 pounds

are common and melts for large superalloy castings weighing i00 pounds or

more are being increasingly required. (65) A furnace with a 1000-pound

melt capability has been announced, and the eventual rating is said to be

3000 pounds. (90)

In typical production cycles, 10-to IZ-pound charges can be melted

and poured in 5 to 6 minutes, which result in overall rates of 6 to I0 fills per

hour. (65, 76) Newer facilities, utilizing a 150-kw power source can melt a

20-poundheat every 2-I/2 minutes and complete a cycle in only 6 minutes.(89)

Vacuum pumps: In the early days of vacuum casting (during the late

1950's and early 1960's), high-vacuum oil-vapor booster pumps (3500 cfm)

backed by rotary-piston mechanical pumps were commonly used to provide

a vacuum of 5 to 15 microns during melting. Addition of a vapor-diffusion

pump between the melt chamber and the vacuum booster permits the entire

process to be conducted at 0. I to I micron,, and this has become standard

today. (76, 89) High pumping capacity is important from the standpoint of

superalloy quality as well as production rates. Though there is some dis-

agreement regarding the ultimate pressure required, today's higher pump-

ing capacity allows production rates to be maintained at very high vacuum, so

that the argument is perhaps irrelavent. A 9-foot-diameter melting chamber,

for example, can be pumped down in only 15 minutes. (90)

* 1 micron = I0 -3 torr.
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Even so, it is well to recognize that in earlier vacuum casting 15 mi-
crons was considered to be sufficient(76), but 0. 1 to 1 micron has become to-

day's criterion for proper melting conditions. (65) Certain foundries(77) con-

sidered 1 micron to be the maximum pressure, even in the early days. Some

have considered high vacuum to be overemphasized, however, and in a

Durville-type furnace (in which the mold is attached upside down to the fur-

nace and the whole assembly is rotated 180 degrees to fill the mold) a pres-

sure of 1/2-rnm Hg was said to be a satisfactory vacuum level; at 10 degrees
before the vertical, argon backfilling helps to force-the melt into the mold.(91)

According to one authority(80), most vacuum casters believe that the

vacuum should be under 1 micron, "so that is where we operate". In normal

production, at the time of pour, the vacuum on a small furnace may be 3 to

4 microns, and on a big furnace 40 microns.

The same source reported that IN 100 and alloys like it had been inten-

tionally melted at a level of 100 to 200 microns without any effect on the

normally measured mechanical properties. (80) On the other hand, when the

vacuum on a heat of B-1900 had been broken for 15 to Z0 minutes, gas pickup

and slagging was the result.

Leak-up rate:* There is good agreement that leak-up rate is more

significant than vacuum level. A large vacuum pump on a leaky furnace can

keep the vacuum level low, even though relatively large volumes of air are

brought in. Proper limits for leak-up rate must be established for each fur-

nace. It is difficult to specify them beforehand as the criterion is whether a

good casting can be produced.

Cold leak-up measures the actual leakage in the furnace through the

various ports, locks, and other openings. A value of 60 microns per cubic

foot per minute for a typical two-chamber apparatus has been reported as

satisfactory. (76) The hot leak-up rate measure, in addition to leakage, the

amount of outgassing from all the components in the furnace as well as from

the molten metal. Rates of 600 to 1200 microns per cubic foot per minute are

said to be tolerable. (76) Ahot leak-up of 8 microns in 15 seconds for a

"small furnace", 5 microns in 1 minute for a "larger furnace", and 5 microns

in 30 seconds for a larger furnace when the metal is "percolating" (outgassing

vigorously) have also been reported. (80) Table 12 shows the relationship of

certain elements to furnace-vacuum characteristics in melting M_AR-M 200

and directionally solidifying it.(92) The oxygen content was believed to in-

crease as a result of reaction with the furnace lining. These figures can

serve as guidelines, but cannot substitute for actual experiments on other

pieces of equipment.

These gas contents are extremely low and they represent results on a

research furnace. In practice, hydrogen levels of master heats may be higher

by a factor of Z or 3, nitrogen by a factor of perhaps 50 to 100, and oxygen by

* A term used in the industry to denote rate of rise of the pressure in the sealed furnace with the pumps shut off.
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a factor of 20 or more. A great deal depends on the ratio of virgin material

to revert, the number of remelts, and the furnace operating conditions.

TABLE 12. EFFECT OF VACUUM-FURNACE CHARACTERISTICS ON

THE CONTENT OF CERTAIN ELEMENTS IN MAR-M

Z00 CAST FROM IDENTICAL MASTER INGOTS(92)

Vacuum- Furnace Conditions

Leak-Up Rate, Working Pressure,

mic rons/minute micron s

Volume

Ppm Wt. % Percent

02 N 2 H 2 S Si Voids

0. I 0.5 I. I 1.3 0.2 21 0.047 0.2

1.6 1 1.7 2.4 0.5 39 0.054 0.3

1.6 >2 1.6 1.7 0.5 44 0.066 0.4

Master Heat 0. 4 1. 4 0.3 52 0. 066

Crucibles: Most of the major vacuum casters use commercially-made

prefired (monolithic) alumina or stabilized-zirconia crucibles. At one major

casting plant, stabilized zirconia is preferred when a continuous vacuum is

maintained, and 88 percent A1203/II percent SiO 2 is used when the operation

is intermittent.(75) Stabilized zirconia is preferred for cobalt-base super-

alloys. (86) Magnesia is still used by some manufactures for certain alloys.

Zirconia in its unstabilized form changes from the monoclinic crystal

form to the tetragonal form at high temperatures, with about a 9-percent

volume change in the process. Therefore, a cubic structure, stable at low

and high temperature is induced by an additive; this process is called "stabi-

lization ''(93). Common stabilizers of zirconia for crucibles are 4 percent

of either CaO or MgO, although a typical composition would contain 3. 5-per-

cent CaO and 0. 5-percent MgO(75). Prolonged heating of MgO-stabilized

ZrO 2 has been reported to cause destabilization to the original form. (93)

Magnesia (MgO) was at one time used extensively( 65, 76, 77, 80), as

was high-purity alumina(65,75,76,77) The latter seems especially suit-

able for rammed crucibles(77), but this usually means those used in larger

furnaces that melt perhaps I00 pounds or more. Prefired alumina is sub-

ject to thermal cycling fatigue and, hence, is not usually used.

Other crucible materials have been tried, or considered. For example,

prefired complex aluminum silicates and zirconium silicates, which have been

used in ordinary investment casting, were investigated, but they did not re-

sist corrosive attack at the molten-metal temperatures used for the super-

alloys. (65) Sillimanite (an aluminum silicate) is said to be strong, but slag-

ging begins to occur when the temperature exceeds =2900 F.(77) Thoria and
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beryllia, while attractive from a chemical stability viewpoint, have been

ruled out because of their high cost, low tolerance for handling under normal

foundry conditions, and susceptibility to cracking due to cyclic thermal

stresses in melting. MgO and zirconia, on the other hand, have proven suc-

cessful because of their resistance to surface erosion and accompanying low

wettability, and their resistance to cracking and spalling. (65)

Installation of the crucibles is accomplished without removing the induc-

tion coil from the vacuum chamber, using a dry unbonded backup of 66-percent

MgO/25-percent AlzO3/(>-percent SiO 2 material and an alumina-cement cap.

A full wash heat of a high-nickel alloy at about 3000 F is required for zirconia
crucibles. (75)

The life of crucibles varies, but, for the small Z0-pound units using

monolithic prefired crucibles, the average life has been reported as 50 to

60 melts, with Z00 occurring "with surprising frequency". (65) For practical

reasons, the crucible may be changed at the end of every 8-hour shift in pro-

duction (usually 48 heats), but this depends on the production cycles and

whether the plant operates on a 1-, 2-, or 3-shift basis. Another report

states that zirconia crucibles will last for 60 to 100 melts if the vacuum is

continuous and the temperature cycles are minimized. (75) Intermittent vac-

uum conditions with wide _temperature cycles yield lives of 20 to 3 5 melts for

the alumina (88-percent Al203/ll-percent SiO2) crucibles. An average life

of 140 melts has been reported for an AI203 crucible (with 5-6 percent SiO_.

from the binder) used for melting a Ni-Cr-W-AI alloy. (77)

Crucible life is shortened when metal oxides, formed during a vacuum

break or introduced with the alloy, allow the melt to wet the crucible and

penetrate its pores. Thus, the use of air locks for charging has extended

crucible life by permitting a continuous vacuum. Furthermore, air locks

permit the crucible to be charged immediately after the melt has been poured

thereby narrowing the thermal-cycle range and reducing the stresses on the

crucible. (75)

Erosion is also minimized by completely draining the crucible to avoid

solidification of metal on the pouring lip and the consequent metal penetration

and unequal thermal expansion between the metal and crucible refractory. (75)

Melting and pouring. Composition control: The charge material for

making vacuum investment castings is typically a 3-1/2-inch-diameter bar of

a master heat that has been previously vacuum-melted and cast. As a rule,

no additions are allowed, whether alloying of master-heat materials or revert

material (gates, sprues, rejected castings, or the like). Because no refining

of the master heat is possible, except perhaps with respect to sulfur and

silicon(92), precautions must be taken to minimize contamination during the

remelting. The rate of evaculation is usually high enough that heating can be

commenced at the same time that pump down is started. (77)
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Obviously the chemical composition of the master heat should be checked

to see that it conforms to the specification. If it does, no significant change

in composition will occur in the ordinarily short production remelting. An

example of the effect of vacuum rernelting in an A1203/5-6 percent SiO 2 cru-

cible on the composition of a nickel-base superalloy was given as the follow-

ing, for a 15-minute cycle at l-micron vacuum level. (77):

Nominal Composition,

percent Change

C 0. 15 -0.02

Si 0.20 Slight gain

Cr 15.0 Negligible

Zr0.07 -0.008

Ti 4.0 -0. 20

A1 4.0 -0. 14

Co 18.0 Nil

Mo8.0 0.20

The main problem in holding the heat for a long time would be in the evapor-

ation of chromium and manganese (which is not given above). The negligible

loss of chromium poses no problem, and since manganese, which is more

volatile, is usually specified as a certain maximum value, its loss is of no

consequence.

Gases in the nickel-alloy melting stock may be responsible for porosity.

If the master heat is high in hydrogen it is almost impossible to remove it,

even with prolonged pumping, because it is held by the titanium and aluminum.

Likewise, oxygen and nitrogen levels cannot be reduced by holding the heat

for a long time under high vacuum. Instead, the chromium will be boiled

out. (80)

In order to keep the melt clean (free of dross) and the casting free of

oxide inclusions, the original charge material should be free of primary

pipe, oxide skins, laps, and refractory inclusions. Oxides and other defects

from these sources are easier to avoid than to get rid of. (65, 80)

Pouring and grain-size control: When the correct pouring temperature

is reached and the mold is in position, the melt should be poured rapidly, the

mold table moved out, and the flapper door closed so that another cycle can

be started. (65) The mold is removed from the mold chamber and an exother-

mic mix poured on top to help feeding while the casting solidifies.

Rapidity of pouring of the melt is important in order to fill thin sections

of the mold and to control grain size. Crucible "turnover" speeds of under

I second are normal for heats under 30 pounds(77), and a typical pouring rate

might be 15 to 20 pounds per second.(91) The manual skill of the operator is

very important here, not only to empty the crucible quickly, but to see that
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the mold is accurately lined up with the stream and that no specks of dust or

refractory have fallen into the mold. (80) At Austenal, pouring is done hydrau-

lically, and the tendency is towards mechanized pouring in order to eliminate

operator differences. TI%W accomplishes accurate pouring control with an

automatic system known as "Mechapour", which significantly reduced varia-

tions among operators.

The pouring temperature, that is, the degree af superheat, is selected

to give a good mold fill, but is must not be so high as to cause a large grain

size, shrinkage porosity, or hot tearing. The melting ranges (solidus to

liquidus) of some superalloys are presented in table 13. One source claims

that if the gating system has been properly designed a superheat (number of

degrees of temperature above the liquidus) of only Z7 to 36 degrees F is satis-

factory because the increased temperature does not greatly increase the

true fluidity; however, the general practice is to use between 100 and Z50 de-

grees F superheat. In this connection, it is well to note again that the mold

preheat temperature is important in insuring complete filling of all details.

Without additional insulation, it is important to keep the mold temperature

within specified limits by controlling the time to move the mold from the pre-

heat furnace to the mold platform, and to complete the pour quickly.

Too little superheat means incomplete filling (misruns), but even if the

mold is completely filled, microporosity might be more prevalent in large

castings at low superheat levels. (77) Generally speaking, the pouring temper-

ature must be fixed on the basis of the alloy and the casting configuration.

Mold Preheat

Temperaturet F Grain Structure

1000 Fine, equiaxed

lZ00 Onset of columnar

1400 Completely columnar

1900 Nearly equiaxed, coarser than at 1000 F

Creep-rupture properties at 1800 F were most consistent and generally better

with the larger equiaxed grains than with the finer; specimens with columnar

grains were inconsistent. The 1400 F properties of all-equiaxed-grain cast-

ings were more consistent than, and superior to, those having columnar

grains. (67)

Cobalt-base superalloys are normally molten in the vicinity of 2450 F.

Experiments on MAR-M 509 with 2.75 to 400 degrees F superheat using a con-

stant mold preheat temperature of 1900 F showed that the grain size and

minimum creep rate were strongly affected by the amount of superheat, and

the average rupture life at 2.000 F/8000 psi increased from about 70 to over

I00 hours with increasing superheat. Figure 50 illustrates the data. Because

of increased mold attack at the higher temperature, however, the superheat

in cobalt-base superalloys is maintained at about 300 F. (86)
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APPROXIMATE MELTING RANGES OF SOME

VACUUM-MELTED SUPERALLOYS

Alloy Melting Range, F

AiResist 13

AiResist 215

Alloy 713C

Alloy 713LC

B-1900

IN i00

MAR-M 200

MAR-M 211

MAR-M 246

MAR-M 302

MAR-M 509

Nimocast 258

PDRL 162

TAX- 8 series

TRW 1900

2400-2500

2400-2500

2300-2350

2350_2410

2325-2375

2305-2435

2400-2500

2350-2450

2400-2450

2400-2450

2450-2550

2390 (liquidus)

2330-2380

2450 (liquidus)

2400-2450

Another way of controlling grain size is by melt temperature reduction

just before pouring, followed by a quick reheating. (94) When an equiaxed

structure is desired, mold nucleation agents are only partially effective.

Essentially, such agents provide a small columnar grain size, which may

appear as equiaxed grains on the casting surface. However, they are in

reality the bases of columnar grains growing inward from the surface.

The relationship of grain size to the degree of superheat, or pouring

temperature, is shown qualitatively in figure 51. Similar curves are obtained

for mold preheat temperature.

The most important aspect of the graph is that the grain-refining addi-

tive is effective only in an intermediate temperature range, whereas at high-

and low-superheat values the grain size is almost the same as without the

additive. (65) This can become a problem in the casting of intricate parts

because the higher pouring temperature may be needed in order to get a good

fill, but the larger grain size that results may be detrimental to properties,

particularly in the range of 1200 to 1600 F. In turbine wheels/blades,
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wherein the center operates at low temperatures, ductility and strength are

important. To improve intermediate temperature ductility, alloys such as

Alloy 713 LC and MAR-M 246 were developed. Good combinations of

strength and ductility over a wide range are also found in IN 100 and

MAR-M 432. The foundry practice also helps in this case. For example,

artificial mold cooling techniques may be used locally to remove the heat

rapidly. However, as the castings become larger these problems are mag-

nified. (68) It is evident that research is needed to develop suitable casting

methods for large superalloy parts. (87)

Experiments with MAR-M 211 using a grain-refining additive and a con-

stant amount of superheat (150 degrees F) showed that grain size and shape,

and casting properties were very dependent on mold preheat temperatures.

For example, the following results were obtained, as shown in figure 5Z.

In this method, the melt temperature is lowered to obtain incipient

nucleation as observed on the melt surface, and the power on the crucible

increased sharply to the pouring temperature, as shown in figure 53. The

sufficient number of nuclei that persist are mixed in the melt by the normal

stirring action of the induction coil. The result is a fine equiaxed

structure. (94)

Remarkable success has been achieved'in developing turbine-blade

castings with long columnar grains oriented parallel with the blade axis.(63, 9z)

A refinement of work first published in 1960(79), the process has shown that

certain beneficial effects on mechanical properties can be obtained on MAR-M

200(63,92 ) and on NASA TAZ-8B. (95) Directional grains are obtained by chil-

ling the bottom of the mold and controllin_ the heat extraction from the rest
of the mold as illustrated in figure 54. (95) A smooth temperature gradient

is maintained in the vertical direction. With a pouring temperature of

2900 • 50 F for TAZ-8B, the temperature of the mold next to the chill block

was made approximately equal to the melting temperature, 2450 F, while

the temperature at the top of the mold was 2750 F. After pouring, the power

was gradually reduced, starting with the bottom coil and moving upward. (9 5)

A recent patent on directional solidification calls for heating the mold

by several separately controlled induction coils surrounding a graphite sus-

ceptor. (96) Power to the coil is adjusted to maintain a temperature gradient

from the top to the bottom of the mold. Additionally, the entire mold assembly

can be slowly withdrawn from the induction coil. Figure 55 shows the method

as depicted in the patent.

Similar procedures were used for MAR-M 200. (9Z) The melt tempera-

ture was Z850 F, which is 350 degrees F of superheat. Control over the

solidification temperature was maintained by monitoring the mold temperature

just above the advancing solidification front, which is indicated by a thermal

arrest.
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i
Time

FIGURE 53. TIME - TEMPERATURE CURVE FOR

CONTROLLED GRAIN CASTING (94)
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FIGURE 55. METHOD OF DIRECTIONAL SOLIDIFICATION (96)

In operation, the ceramic mold 28 is fastened to the

chill plate 22 by means of bolts or clamps. The mold assembly is

heated in a gradient fashion by the split induction coil 1___3operating

through the graphite susceptor 16. The upper portion of the mold

would typically be at a temperature above the melting point of the

alloy, while the bottom would be held at a temperature below the

melting point. After the metal has been poured, the solidification

is controlled by adjusting the power to the coils, or in combination

with lowering of the mold from the position shown.
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Casting of single-crystal blades is similar to that for directionally

solidified blades, except that a multiple-turn constriction in the path of the

growing columnar grains selects one grain with a [001] orientation for growth.

Figures 56 and 57 illustrate the method. (97)

Sizes and Tolerances

A continuous effort is being made to increase the size and dimensional

accuracy of vacuum-cast superalloys. On a production basis, 26-inch-

diameter castings requiring a 250-pound melt are being made, and 30-inch-

diameter castings requiring 550 pounds of alloy can be made on special pro-

grams. Examples of relatively large nozzles with hollow vanes are shown

in figure 58. Production facilities of one major vacuum caster allow 72-inch-

diameter castings and 1000-pound melts(98}; another reports a potential of

60-inch castings requiring 3000 pounds of superalloy.(90) Research pro-

grams underway are aimed at improving the methods of producing 100-pound

structural castings to serve as turbine disks or aircraft fin beams(61), and

thin-walled (0.040 to 0. 060 inch) castings 48 inches in diameter for a gas-

turbine diffuser case. (87)

The recent history of precision vacuum casting has been strongly con-

nected to gas-turbine engine blades, vanes, and integral wheels/blades.

Typically, dimensional tolerances run + 0. 005 in. /in. of the blueprint speci-

fication, although for a given set of tools a smaller variation can be expected

from part to part. (67) A typical uncomplicated turbine blade with a 5-inch-

long by 2-inch-wide airfoil may be quoted with 0. 002 in. /in. tolerances(78),

but the usual recommended tolerances might be:

±0.003 inch for dimension up to 0.25 inch

±0.004 inch for dimensions from 0.25 to 0.50 inch

±0.005 inch for dimensions from 0.50 to 1.5 inches

±0.005 in. /in. for each linear inch over 1 inch.

Closer tolerances than 0.005 in. /in. are sometimes called for because in a

large casting the accumulated variations in dimension might be unacceptable

(more precision than needed should not be specified). Figure 59 shows some

nozzle and wheel/blade castings. Tolerances for axial-flow nozzles, radial-

flow nozzles, and axial-flow wheel/blades are shown in figure 60.(6_) Note

that the diameter tolerance on 6 to 7 inch wheels is ±0. 022, or about

0. 003 in. /in.

The basic cause of variations in investment casting is shrinkage.

Shrinkage of the pattern, mold, and solidifying metal can be calculated, but

deviation of the amount of shrinkage from the expected value causes dimen-

sional variations. It has been found that mold and metal temperature are con-

siderably less important in this respect than in the section thickness and that

the ability to control dimensions was directly proportional to the square root

of the dimension. (99)
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FIGURE 59. CASTINGS O F  AXIAL-FLOW NOZZLE (TOP) ,  AXIAL-FLOW 
WHEEL/BLADES (BOTTOM) AND RADIAL-FLOW WHEELS 

(Cour t e sy  Misco  Division, Howmet Corpora t ion)  
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Outlook

Remarkable progress has been made in precision casting of superalloys
in the past 10 years - so much so that cast turbine buckets, which rotate at

high temperatures and stresses, have won wide acceptance. No longer is

there a reluctance to choose cast alloys over forged alloys, because good pro-

duction and inspection techniques, together with actual operating experience,
have shown that the castings are reliable.

What can be expected for the future? Research on vacuum casting is

proceeding in three directions: toward better alloys and metallurgical con-

trol, toward increased equipment capabilities (that is, toward larger cast-

ings), and toward increased capabilities for making complex parts. (70, 98)

In the metallurgical area, we have seen new alloys being introduced

steadily in the past 5 years, some developed by private industry and some by

government. This trend can be expected to continue in order to satisfy the

demand for stronger, more corrosion-resistant alloys with longer service

lifetimes. Sometimes the approach has been not toward new alloys but to-

ward controlled grain structures as exemplified by directionally solidified or

even single-crystal turbine blades. This trend can also be expected to con-

tinue, although economics and technical requirements may be joined in bat-

tle. A typical directionally cooled airfoil requires up to 6 hours to complete,

obviously a very costly operation. Moreover, the longer time in contact

with the mold refractory is detrimental and will require new refractories

and possibly new alloys especially designed for this technique.

More research is being directed towards greater complexity of cast-

ings, especially those with delicately cored passages. Close cooperation of

ceramists, metallurgists, and other technologists is required. In general,

increased shape capabilities with increased precision are being sought. One

problem to overcome is the loss of ductility in thin sections and in very thick

sections. Furthermore, research is now underway to relate foundry vari-

ables to the observed low creep-rupture life in thin cast sections. Among
the variables studied are mold preheating temperature, superheat at the

time of pouring, and cooling rate after the mold is filled. Good correlation

was found between the creep-rupture life and the amount of micro-shrinkage.
More investigations of this type can be expected as the needs for better

quality control in complex castings are increased.

Larger vacuum castings can be expected, but the increased size will

be accompanied by a strong effort toward solving the problems of dimen-

sional accuracy, without which casting might lose its advantage over the

other methods. Control of microstructure, particularly microsegregation,

in large castings presently limits turbine-wheel castings to 24 inches in

diameter, and this problem will engage metallurgist and precision-casting

technologists, especially in the gas-turbine industry. (70) An example of a

large structural component is shown in figure 61.
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The next i0 years, just as the past i0,

sion of the scope of vacuum-cast superalloys,

and ground-transportation systems.

seem likely to see wide expan-

especially in the field of air-
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APPENDIX

COMPILATION OF FACILITIES AVAILABLE IN THE U. S.

The tables presented herein list and describe the vacuum-_nduction

melting, vacuum-arc remelting, and electroslag-remelting facilities of those

companies known to be producing superalloy ingots. These data were derived

primarily from the literature sources noted at the end of each table and were

updated to the extent that additional information was available.
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TABLE A-1. VACUUM-INDUCTION-FURNACE

(50 Pounds

Company and Plant Location Furnaces

power

Furnace Supply,

Equipment Sup'pliers Capacity, kw

Melting Vacuum lb rating

Allvac, a Teledyne Company

Monroe, N. C.

Induetotherm Stokes 3,000 3?5

lnductotherm Stokes Y/, 000 1,200

CVC CVC/Kinney 50 30

Armco Steel Corporation

Baltimore, Md.

Inductotherm Stokes/Elliott 50,000 2,500

Arwood Corporation

Groton, Conn.

Bethlehem Steel Corporation

Bethlehem, Pa.

Induetotherm Heraeus- 50 150

Engelhard

CVC CVC/Kinney 500 1_5

Cameron Iron Works

Houston, Texas

Cannon-Muskegon Corporation

Muskegon, Mich.

Inductotherm Elliott 20,000 2,500

Inductotherm Elliott 60,000 2,500

Cameron

Toeco Stokes 60 100

1 Tocco Stokes 400 100
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INSTALLATIONS IN THE U. S.(a)

and Over)

Power

Supply, Avg

Output Heat Melting

Frequency, Size, Rate,

elm lb lb/hr

Charging
Method

Pouring

Method,

Single

Ingot
Mold or

Multiple

Casts
Alloying
Methods Product

Materials

Melted(b)

960 3,000 1,000

180 15o000 3,600

4,200 30 30

60 47,000 NA

3,000 30 200

960 300 150

180 20,000 8,000

180 50,000 I0,000

3,000 60 60

3,000 400 200

Manual,

vacuum
locks

Manual

overhead,

vacuum

locks

Through

vacuum

locks

Hot metal

through
vacuum

lock,

top load

cold charge

Slug

Manual

Manual

o verhead,

vacuum

locks

Manual

overhead,

vacuum

locks

Multiple

casts

Multiple

casts

Both

Multiple

casts

single-
ingot
mold

Both

Multiple

casts

Multiple

casts

Both

Both

Through
vacuum locks

Through
vacuum locks

Through

vacuum locks

Through
vacuum locks

Rotating

cups

Multiple

buckets,

vacuum

locks

Through
vacuum locks

Through
vacuum locks

Vib hoppers

Vib hoppers

Ingots,

electrodes,
remelt stock

Electrodes,

ingots

Ingots,
electrodes

Ingots,
electrodes

Castings

Ingots,

castings

Castings,

ingots

Ingots,
remelt stock

HTA, NBA,

CBA, SA

HTA, NBA,

CBA, SA

Experimental

alloys

S, SA, HTA,
SS

HTA

BS, HPA,

HTA, IBA,

LA,LC,

MC, NBA,

S, SS, SA,

SP -A, TS

NBA, BS,

CBA, HTA,

IBA, S, SA

NBA

LA, S, NBA,

CBA, HTA,

SA,SP-A,

IBA, SS

LA, S, NBA,

CBA, HTA,

SA, SP-A,

IBA, SS
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TABLE A-i.

Company and Plant Location Furna ces

Equipment Suppliers

Melting Vacuum

Furnace

Capacity,

lb

Power

Supply,

kw

rating

Cannon-Muskegon Corporation

Muskegon, Mich.

Inductotherm Stokes 1,200 350

Inductotherm Stokes 2,400 350

Carpenter Steel Company

Reading, Pa.

Inductotherm Stokes 3,200 350

Ajax Stokes/Ajax 15,000 1,500

1 Ajax Stokes 1,500 300

Crucible Steel Company of America

Syracuse Works

Syracuse, N. Y.

Cyclops Corporation

Universal-Cyclops Specialty

Steel Division

Pittsburgh, Pa.

NRC Kinney/NRC

NRC Kinney/NRC

NRC Kinney/NRC

1 Stokes CVC

3,000

3,000

3,000

2,000

qO0

600

7O0

350

1 NCR CVC 3,500 500

1 CVC CVC 50 100
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Power

Supply,

Output

Frequency,

cps

Avg

Heat Melting

Size, Rate, Charging

lb lb/hr Method

Pouring

Method,

Single-
ingot

Mold or

Multiple

Casts

Alloying

Methods Product

Materials

Melted( b )

1,000

1,000

1,000

180

960

960

960

960

960

960

3,000

1,200

2,400

3,200

15,000

1,500

2,800

2,800

2,800

2,000

3,500

50

550 Manual Both

overhead,

vacuum

locks

550 Manual Both

overhead,

vacuum

locks

1,000

NA

525

525

525

Manual Both

overhead

bulk and

controlled

rate

through

vacuum

locks

Manual Both

overhead

Both

Both

Both

Overhead Both

Overhead Both

Vib hoppers and

top leader

Vib hoppers,

top loader

Throu gh

vacuum locks

Through

vacuum locks

Throu gh

air locks

Through air

locks

Through

vacuum locks

Through

vacuum locks

Ingots,

remelt stock

Ingots,

remelt stock

Ingots,

electrodes

Ingots,

electrodes

LA, S, NBA,

CBA, HTA,

SA, SP-A,

IBA, SS

LA, S, NBA,

CBA, HTA,

SA, SP-A,

IBA, SS

HTA, S,

NBA, TS,

EA, IBA,

SS,SA,

SPA

HTA, S,

NBA, TS,

EA, IBA,

SS,SA,

SPA

S, SA, TS,

BS, pure

iron

S, SA, TS,
BS, pure

iron

BS, EA, HTA,

NBA, S, SS,

SA, SP-A

BS, EA, HTA,

NBA, S, SS,

SA, SP-A

BS, EA, HTA,

NBA, S, SS,

SA, SP-A
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TABLE A-I.

Company and Plant Location Furnaces

Equipment Suppliers

Melting Vacuum

Power

Furnace Supply,

Capacity, kw

lb rating

Wilbur B. Driver Company

Newark, New Jersey

i Tocco Stokes 2,000 350

I Inductotherm Stokes 5, 000 I, 000

Geraetebau- Bendix

Anstalt Balzer

q 0 100kw

Driver-Harris Company

llarrison, N. J.

Eastern Stainless Steel Corporation

Baltimore, Md.

1 CVC CVC

1 Inductotherm Stokes

600 176

3,500 350

Firth-Sterling, Inc.

McKeesport, Pa.

General Electric Company

Schenectady, N. Y.

Philadelphia, Pa.

Howmet Corporation

Austenal Microcast Division

Dover, N. J.

1 Geraetebau- Bendix

Anstalt Balzer

1 Ajax Elliott

1 Ajax Ajax/glliott

1 Inductotherm Stokes

I [nductotherm NRC

1 Inductotherm Hull

i Ajax Heraeus-

Engelhard

qO I00

5,000 300

50, 000 3,000

50 50

3,000 350

4, 000 700

12,000 I,000

1 NRC NRC 200 100
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Power

Supply,

Output

Frequency,

eps

Avg

Heat

Size,

lb

Melting

Rate,

Ib/hr

Charging

Method

Pouring

Method,

Single-

Ingot

Mold or

Multiple

Casts
ALloying

Methods Product

Materials

Melted( b )

960

180

2,500

960

960

2,500

180

180

3,000

96O

960

180

3,000

2,000

5,000

70

600

3,500

70

5,000

50,000

50

3,400

4,400

5,000

60

90O

2,000

600

1,000

NA

1,000

15,000

1,000

2,000

2,500

NA

Vacuum

lock

Vacuum

lock

Top

loadem

Manual

through

vacuum
locks

Manual

ovexhead

Top

loaders

Through

vacuum

locks

Chute

Conveyor

Conveyor

Slug

Both

Both

Tundish and

direct,

single

ingot

Both

Both

singie-
ingot mold

Both

Both

Multiple

casts

Multiple

casts

Multiple

casts

Single -

ingot mold

Vib hopper

Vib hopper

Vacuum lock

chute

Vib hopper

Through

vacuum

locks

Vacuum lock

canisters

Multiple

buckets

Chute

Conveyor

Conveyor

Ingots

Ingots

Ingots

Ingots

Ingots,

remelt

stock

Ingots,

electrodes

Remelt stock

Remelt stock,

ingots

Electrodes,

remelt stock,

ingots

Castings

EA, HPA,

NBA,

SP-A,

HTA

EA, HPA,

NBA,

SP -A,

HTA

HTA, NBA

EA, HTA,

NBA, S,

SP-A

S, CBA,

HTA,

NBA, SS,

SA, Sp-A

HTA, NBA

HTA, CBA,

IBA, NBA

HTA

HTA

HTA

HTA
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TABLE A-1.

Company and Plant Location Furnaces

Furnace

Equipment suppliers Capacity,

Melting Vacuum Ib

Power

Supply,

kw

rating

Howmet Corporation

Austenal Microcast Division

Dover, N. J.

Misco Division

Muskegon, Mich.

International Nickel Company, Inc.

Huntington Alloy Products Division

Bumaugh, Ky.

Kelsey Hayes Company

Philadelphia, Pc.

Latrobe Steel Company

Latrobe, Pc.

Inductotherm Heraeus-

Englehard

Inductotherm Stokes

Inductotherm

1 Ajax

1 Ajax Elliott

1 Inductotherm Stokes

1 Stokes Stokes

Heraeus-

Englehard

Stokes

Inductotherm Stokes/Elliott

50

100

50

i00

5,000

I00

2,000

60,000

150

I00

150

100

1,000

100

333

2,400

Martin Metals

Wheeling, Ill.

Inductotherm CVC/Kinney 500 175

Inductotherm Stokes/CVC 5, 000 _00

Inductotherm Stokes 50 50

Pratt and Whitney Company

Manchester, Conn.

1(c)

1(c)

Ajax

Inductotherm

CVC

Vacuum

Industries

50

50

i00

30
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(Continued)

Power

Supply,

Output

Frequency,

cps

Avg

Heat

Size,

lb

Melting

Rate,

lb/hr

Charging

Method

Pouring

Method,

sing!e-
Ingot

MoId or

Multiple

Casts

Alloying

Methods Product

Materials

Melted( b )

3,000

3,000

3,000

3,000

180

3,000

960

60

960

960

960

3,000

3,000

45

30

50

5,000

100

2,000

15,000-

60,000

650

5,000

20

15

20

30 NA Slug

NA

NA

200

2,000

2O0

650

2,000

100

2OO

NA

Slug

Slug

Top loader

Vacuum

lock

can_ters

Cold charge

Hot metal

through

vacuum

lock or

cold charge

Manual

through
vacuum

locks

Manual

through

charging

locks

Through

vacuum

lock

Vacuum

locks

Manual

vacuum

locks

Single -

ingot mold

single-
ingot mold

single-
ingot mold

single-
ingot mold

Multiple

casts

Multiple

ingots and

casts

Multiple

ingots and

casts

Multiple

casts

Multiple

casts

Both

single
mold

Single
mold

Through

vacuum locks

Vacuum lock

canisters

Throu gh

vacuum locks

Through

vacuum

locks

Through

vacuum

locks

Through
vacuum

locks

None

'/a CUU ITI

locks

Castings

Castings

Castings

Castings

Ingots,

electrodes

Ingots,

electrodes

Ingots,

electrodes

Remelt,

ingots,

castings

Re melt,

ingots

Castings

Castings

Castings,

ingots

HTA

HTA

HTA

NBA

NBA

HTA, BNA,

SS

HTA, NBA,

SS

HTA

HTA

HTA

NBA, CBA,

HTA

Experimen -

tal alloys
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TABLE A-I.

Company and Plant Location Furnaces

Equipment Suppliers

Melting Vacuum

Power

Furnace Supply,

Capacity, kw

lb rating

Sherwood Metals Division

H. J. Sherwood, Inc.

Cleveland, Ohio

Special Metals Corporation

New Hartford, N. Y.

2 S tokes Stokes

1 Ajax CVC

2 Tocco Stokes

50 50

100 100

1,200 300

1 ASEA Stokes 2,200 550

1 ASEA Stokes 5,000 I, I00

Inductotherm Stokes 12,000 1,200

TRW Metals Division, TRW, Inc.

Minerva, Ohio

Union Carbide Corporation

Stellite Division

Western Electric Company

Chicago, Ill.

Wyman-Gordon Company

Worcester, Mass.

Ajax Elliott

Inductotherm CVC

Inductotherm Stokes

[nductotherm NRC

Inductotherm NRC

[nductotherm Stokes

Inductotherm NRC

Inductotherm Stokes

[nductotherm Bendix

Balzer

30,000 3,300

I0,000 1,200

50 50

5O 5O

3,000 500

10,000 1,700

150 150

600 250

2,500 500
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Power

Supply,

Output

Frequency,

cps

Avg

Heat Melting

Size, Rate, Charging

lb lb/hr Method

Pouring

Method,

Single -

Ingot

Mold or

Multiple

Casts
Alloying Materials

Methods Product Melted(b)

4,000

10,000

3,000

890

890

180

180

180

3,000

3,000

96O

180

960

960

50 150 Single

chamber

side loader

100 100 Manual

1,200 400 Manual

2,200 1,200 Manual

5,000 2,500 Manual

12,000 5,000 Manual

30,000 15,000 Manual

10,000 1,000 Manual

50 150 Manual

50 150 Manual

3,000 1,500 Manual

10,000 5,000

100

6OO 750

5002,500

Overhead

vacuum

lock

Overhead

vacuum

locks

Single-

ingot mold

Both

Both

Both

Both

Both

Both

Both

Both

Both

Both

Both

Multiple

molds

Both

Both

None Castings CBA, NBA

Rotating Ingots NBA, SS

CUPS,

vacuum locks

Rotating Ingots NBA, SS

CUpS,

vacuum locks

Rotating Ingots, NBA, SS

cups, remelt

vacuum locks stock

Rotating Ingots, NBA, SS

cups, remelt

vacuum lock stock

Rotating Ingots NBA, SS

CUPS,

vacuum locks

Through Ingots kq3A, SS
vacuum locks

Vacuum lock Ingots, NBA, SS

remelt stock

Manual Castings NBA, SS

Manual Castings NBA, SS

Vacuum lock Ingots, NBA, SS

remelt stock

Remelt stock HTA, SA,

NBA, CBA,

IBA

Remelt stock SA

Throu gh

vacuum

locks

Through

vacuum

locks

Ingots NBA

HTA, SA,

SS
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TABLE A-i.

Company and Plant Location Furnaces

Furnace

Equipment Suppliers Capacity,

Melting Vacuum lb

Power

Supply,
kw

rating

Wyman-Gordon Company

Worcester, Mass.

1 Stokes Stokes

Bendix CVC/Kinney

Balzer

150

20,000

50

1,500

(a) Material in this table was taken from 33 Magazine, June, 196'/.

(b) HTA - high-temperature alloys

NBA - nickel-base alloys

CBA - cobalt-base alloys

IBA - iron-base alloys

SA - superalloys

S - steel

SS -- stainless steel

SP-A -- specialty alloys

(c) Research only.
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Power

Supply

Output

Frequency,

eps

Avg

Heat

Size,

lb

Melting

Rate,

lb/hr

Charging

Method

Pouring

Method,

single-
Ingot

Mold or

Multiple

Casts

Alloying

Methods Products

Materials

Melted(b)

3,000

180

100

10,000

50

1,500

Overhead

vacuum

locks

Overhead

vacuum

locks

Both

Both

Through

vacuum

locks

Through
vacuum

locks

HTA, SA,

SS

HTA, SA,

SS
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